Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow y^3+5y^2-6y^2-30y+9y+45=0\)
\(\Rightarrow y^2\left(y+5\right)-6y\left(y+5\right)+9\left(y+5\right)=0\)
\(\Rightarrow\left(y^2-6y+9\right)\left(y+5\right)=0\)
\(\Rightarrow\left(y-3\right)^2\left(y+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\left(y-3\right)^2=0\Rightarrow y=3\\y+5=0\Rightarrow y=-5\end{cases}}\)
Vậy ........................
Ta có : \(y^3-y^2-21y+45=0\)
\(\Leftrightarrow y^3+5y^2-6y^2-30y+9y+45=0\)
\(\Leftrightarrow y^2\left(y+5\right)-6y\left(y+5\right)+9\left(y+5\right)=0\)
\(\Leftrightarrow\left(y+5\right)\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow\left(y+5\right)\left(y-3\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}y+5=0\\y-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=-5\\y=3\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-5;3\right\}\)
a. y3 - y2 - 21y +45 = 0
⇔y3+5y2-6y2-30y+9y+45=0
⇔(y3+5y2)-(6y2+30y)+(9y+45)=0
⇔y2(y+5)-6y(y+5)+9(y+5)=0
⇔(y+5)(y2-6y+9)=0
⇔(y+5)(y-3)2=0
⇔\(\left[{}\begin{matrix}y+5=0\\\left(y-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-5\\y-3=0\Leftrightarrow y=-3\end{matrix}\right.\)
vậy s={-5;-3}
d) Ta có: \(\left(y+3\right)^2\ge0\forall y\)
\(\left(y+5\right)^2\ge0\forall y\)
Do đó: \(\left(y+3\right)^2+\left(y+5\right)^2\ge0\forall y\)
mà \(\left(y+3\right)^2+\left(y+5\right)^2=0\)
nên \(\left\{{}\begin{matrix}\left(y+3\right)^2=0\\\left(y+5\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+3=0\\y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-3\\y=-5\end{matrix}\right.\)
Vậy: y=-3 và y=-5
Câu x ) là bằng - 5 nhé mấy bạn. Làm giúp mình tất cả nhé ! Mình cảm ơn nhiều lắm !
a) ta có : \(N=-21x^{99}-21x^{98}-...-21x^2-21x\)
\(\Rightarrow xN=-21x^{100}-21x^{99}-...-21x^2-21x^2\)
\(\Rightarrow xN-N=-21x^{100}+21x\)
\(\Leftrightarrow\left(x-1\right)N=-21x^{100}+21x\Leftrightarrow N=\dfrac{21x-21x^{100}}{x-1}\)
\(\Rightarrow A=x^{100}-21x^{99}-21x^{98}-...-21x^2-21x+2010\)
\(=x^{100}+\dfrac{21x-21x^{100}}{x-1}+2010\)
\(=\dfrac{21x-21x^{100}+x^{101}-x^{100}+2010x-2010}{x-1}\)
\(=\dfrac{x^{101}-22x^{100}+2031x-2010}{x-1}\)
thay \(x=22\) ta có : \(A=\dfrac{22^{101}-22.22^{100}+2031.22-2010}{22-1}\)
\(=\dfrac{22^{101}-22^{101}+2031.22-2010}{21}=\dfrac{2031.22-2010}{21}=2032\)
vậy ............................................................................................................
câu b lm tương tự .
c.
\(4y^2+1=4y\)
\(\Leftrightarrow4y^2-4y+1=0\)
\(\Leftrightarrow4y^2-2y-2y+1=0\)
\(\Leftrightarrow2y\left(2y-1\right)-\left(2y-1\right)=0\)
\(\Leftrightarrow\left(2y-1\right)^2=0\)
\(\Leftrightarrow y=0\)
d.
\(y^2-2y=80\)
\(\Leftrightarrow y^2-2y-80=0\)
\(\Leftrightarrow y^2-10y+8y-80=0\)
\(\Leftrightarrow y\left(y-10\right)+8\left(y-10\right)=0\)
\(\Leftrightarrow\left(y+8\right)\left(y-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y+8=0\\y-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-8\\y=10\end{matrix}\right.\)
b) \(y^2-y-12=0\)
\(\Leftrightarrow y^2-4y+3y-12=0\)
\(\Leftrightarrow y\left(y-4\right)+3\left(y-4\right)=0\)
\(\Leftrightarrow\left(y+3\right)\left(y-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y+3=0\\y-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=-3\\y=4\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{3;-4\right\}\)
o) \(y^3-y^2-21y+45=0\)
\(\Leftrightarrow y^3+5y^2-6y^2-30y+9y+45=0\)
\(\Leftrightarrow y^2\left(y+5\right)-6y\left(y+5\right)+9\left(y+5\right)=0\)
\(\Leftrightarrow\left(y+5\right)\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow\left(y+5\right)\left(y-3\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}y+5=0\\y-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=-5\\y=3\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-5;3\right\}\)
n) \(x^2+2x+7=0\)
\(\Leftrightarrow x^2+2x+1+6=0\)
\(\Leftrightarrow\left(x+1\right)^2+6=0\left(ktm\right)\)
Vậy tập nghiệm của phương trình là : \(S=\varnothing\)
q) \(\left(y+3\right)^2+\left(y+5\right)^2=0\)
Mà \(\left(y+3\right)^2\ge0\)
\(\left(y+5\right)^2\ge0\)
\(\Leftrightarrow\hept{\begin{cases}\left(y+3\right)^2=0\\\left(y+5\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-3\\y=-5\end{cases}}\)
Vậy ..... (Cái này k biết kết luận ntn)
p) \(2y^3-5y^2+8y-3=0\)
\(\Leftrightarrow2y^3-y^2-4y^2+2y+6y-3=0\)
\(\Leftrightarrow y^2\left(2y-1\right)-2y\left(2y-1\right)+3\left(2y-1\right)=0\)
\(\Leftrightarrow\left(2y-1\right)\left(y^2-2y+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2y-1=0\\y^2-2y+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{2}\left(tm\right)\\\left(y-1\right)^2+2=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\frac{1}{2}\right\}\)
y^3 - y^2 - 21y + 45 = 0
<=> y^3 - 3y^2 + 2y^2 - 6y - 15y + 45 = 0
<=> y^2(y - 3) + 2y(y - 3) - 15(y - 3) = 0
<=> (y^2 + 2y - 15)(y-3) = 0
<=> (y^2 + 5y - 3y - 15)(y - 3) = 0
<=> [y(y+5) - 3(y-5)](y-3) = 0
<=> (y-3)(y+5)(y-3) = 0
<=> y- 3 = 0 hoặc y + 5 = 0
<=> y = 3 hoặc y = -5