abc là số tự nhiên có 3 chữ số thỏa mãn \(\overline{abc}⋮n;\overline{bca}⋮n;\overline{cab}⋮n\)
CMR \(a^3+b^3+c^3-3abc⋮n\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy c là số chẵn (1)
\(\overline{abc}=4c\left(a+b\right)^2\)
\(\Leftrightarrow100a+10b+c=4c\left(a+b\right)^2\)
\(\Leftrightarrow9\left(11a+b\right)+\left(a+b\right)+c=3c\left(a+b\right)^2+c\left(a+b\right)^2\)
\(\Leftrightarrow c\left[\left(a+b\right)^2-1\right]-\left(a+b\right)=9\left(11a+b\right)-3c\left(a+b\right)^2\)
\(\Rightarrow c\left[\left(a+b\right)^2-1\right]-\left(a+b\right)⋮3\)
Xét \(\left(a+b\right)\equiv1\left(mod3\right)\)
\(\Rightarrow c\left[\left(a+b\right)^2-1\right]-\left(a+b\right)\equiv-1\left(mod3\right)\)
Xét \(\left(a+b\right)\equiv-1\left(mod3\right)\)
\(\Rightarrow c\left[\left(a+b\right)^2-1\right]-\left(a+b\right)\equiv1\left(mod3\right)\)
Xét \(\left(a+b\right)\equiv0\left(mod3\right)\)
\(\Rightarrow c⋮3\)(2)
Từ (1) và (2) \(\Rightarrow c=6\)
\(\Rightarrow\overline{abc}⋮3\)
\(\Rightarrow a+b+6⋮3\)
\(\Rightarrow a+b⋮3\)
Mà ta có:
\(a+b=\sqrt{\frac{\overline{ab6}}{24}}\le\sqrt{\frac{996}{24}}\le6\)
Tới đây đơn giản làm nốt nhé
100\(\le\)\(n^2\)-1=\(\overline{abc}\)\(\le\)999
\(\Rightarrow\)100<101\(\le\)\(n^2\)=\(\overline{abc}\)+1\(\le\)1000
\(\Rightarrow\)\(10^2\)<\(n^2\)<\(32^2\)\(\Rightarrow\)10<n<32
\(\overline{abc}\)-\(\overline{cba}\)=\(n^2\)-1-\(n^2\)+4n-4
\(\overline{abc}\)-\(\overline{cba}\)=(\(n^2\)-\(n^2\))+4n-1-4
\(\overline{abc}\)-\(\overline{cba}\)=0+4n-5
(100.a+10.b+c)-(100c+10b+a)=4n-5
99a-99c=4n-5
\(\Rightarrow\)4n-5\(⋮\)99(1)
Vì 10<n<32\(\Rightarrow\)35<4n<123(2)
Từ (1) và(2) \(\Rightarrow\)4n-5=99
\(\Rightarrow\)n=99+5 :4 =26
\(\overline{abc}\)=\(26^2\)-1
\(\overline{abc}\)=675
\(\overline{cba}\)=576
\(abc=\left(a+b+c\right)\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=0\\c=0\end{cases}}\)
\(\Rightarrow a=b=c=0\)
Theo bài ra, ta có:
=n2 -1
(100a+10b+c)=n2 -1 (100c+10b+a)=n2-4n+4
(100a+10b+c)-(100c+10b+a)=(n2 -1)-(n2-4n+4)
=>99a-99b=n2-1-n2+4n-4
99.(a-c)=4n-5
=> 4n-5 chia hết cho 99
4n-5 thuộc {0;99;198;297;396;495;594;693;....}
4n thuộc {5;104;203;302;401;500;...}
n thuộc {26;125;...}
vì nhỏ nhất nên n nhỏ nhất
=> n=26
=>=675
nhớ ticks cho mình nha
Ta có :
abc = 100a+10b+c (1)
cba = 100c+10b+a (2)
Thay (2) vào (1) ta được :
99( a - c ) = 4n - 5
=> 4n-5 \(⋮\) 99
Vì 100 \(\le\) abc \(\le\) 999 nên :
100 \(\le\) \(n^2-1\)\(\le\) 999 =>101 \(\le\) \(n^2-1\) \(\le\) 1000 => 11 \(\le\) 31 đến 39 \(\le\) 4n - 5 \(\le\) 119
Vì 4n - 5 \(⋮99\) nên :
n =26 ; abc = 675
A = \(\overline{abc}\) + \(\overline{cba}\)
A = 100a + 10b +c + 100c + 10b + a
A = 100( a +c) + (c+a) + 20b
A = (a+c) (100 +1) + 20b
A = 9.101 + 20b
A = 909 + 20b
Để A là một số có 3 chữ số thì A \(\le\) 999
\(\Leftrightarrow\) 909 + 20b \(\le\) 999
\(\Leftrightarrow\) 20b \(\le\) 90
\(\Leftrightarrow\)b \(\le\) 9/2
\(\Leftrightarrow\) b \(\in\) { 0; 1; 2; 3; 4}
Câu hỏi của Nguyễn Thị Linh Chi - Toán lớp 6 - Học toán với OnlineMath
Đề sai; giải sửa luôn nhá
\(\hept{\begin{cases}\overline{abc}=n^2-1\\\overline{cba}=\left(n-2\right)^2\end{cases}}\Leftrightarrow\hept{\begin{cases}100a+10b+c=n^2-1\\100c+10b+a=n^2-4n+4\end{cases}}\)
\(\Rightarrow\left(100a+10b+c\right)-\left(100c+10b+a\right)=\left(n^2-1\right)-\left(n^2-4n+4\right)\)
\(\Leftrightarrow99a-99c=4n-5\)
\(\Leftrightarrow99\left(a-c\right)=4n-5\Rightarrow4n-5⋮99\)
Ta thấy \(100\le\overline{abc}=n^2-1\le999\Leftrightarrow101\le n^2\le1000\Leftrightarrow10< n< 31\)
\(\Rightarrow45< 4n-5< 119\Rightarrow4n-5=99\Rightarrow n=26\)
\(\Rightarrow\overline{abc}=26^2-1=675\)
Vậy \(\overline{abc}=675\)