tìm các số tự nhiên n lớn hơn 0 để:36^n-6 là số chính phương
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
SN
1
SN
0
SN
0
SN
0
SN
0
SN
0
YN
11 tháng 9 2021
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
\(36^n-6\)là số chính phương khi đó tồn tại số nguyên dương k sao cho:
\(36^n-6=k^2\)
Vì \(\hept{\begin{cases}36⋮6\\6⋮6\end{cases}}\)=> \(k^2⋮6\)=> \(k⋮6\)=> Đặt : k = 6t ( t nguyên dương )
Khi đó: \(36^n-6=36t^2\)
<=> \(6.36^{n-1}-1=6t^2\)
Vì \(6t^2⋮6\); \(6.36^{n-1}⋮6\)=> \(1⋮6\)vô lí
Vậy không tồn tại n.