Cho p và \(p^2+2\) là các số nguyên tố . Cmr \(p^3+p^2+1\) cũng là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
Do x, y nguyên dương nên số đã cho là SNT khi:
\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)
\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Thay vào kiểm tra thấy thỏa mãn
2. \(N=n^4+4^n\)
- Với n chẵn hiển nhiên N là hợp số
- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)
\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)
\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)
Mặt khác:
\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)
\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)
\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1
\(\Rightarrow\) N là hợp số
Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).
Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9
Nó cũng không thể chỉ chứa các chữ số 3 và 9 (sẽ chia hết cho 3)
Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)
a, Đề phải là cm p^2-1 ko nguyên tố
Vì p nguyên tố > 3 => p ko chia hết cho 3 => p^2:3 dư 1 => p^2-1 chia hết cho 3
Mà p nguyên tố > 3 => p^2-1 > 3
=> p^2-1 là hợp số
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Bài 2 : c)
+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
Bài 4 : Tích của hai số tự nhiên là số nguyên tố nên một số là 1, số còn lại (kí hiệu a) là số nguyên tố.
Theo đề bài, 1 + a cũng là số nguyên tố. Xét hai trường hợp :
- Nếu 1 + a là số lẻ thì a là số chẵn. Do a là ....
Còn lại bạn tự làm nha , mình mỏi tay quá !
Answer:
Mình nghĩ đề là \(p^3+2\) mới đúng chứ nhỉ?
Ta nhận xét được:
Mọi số nguyên tố lớn hơn 3 thì chia cho 3 đề có dạng: \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\left(k\inℕ^∗\right)\)
\(\orbr{\begin{cases}p=3k+1\Leftrightarrow p^2+2=9k^2+6k+3⋮3\\p=3k+2\Leftrightarrow p^2+2=9k^2-6k+6⋮3\end{cases}}\)
Vì p là số nguyên tố nên \(p\ge2\) khi đó trong cả hai trường hợp thì \(p^2+2>3\) và \(⋮3\)
\(\Rightarrow p^2+2\) là hợp số
\(\Rightarrow p^2+2\) là số nguyên tố khi \(p=3\) (Lúc này \(p^2+2=11\) là số nguyên tố)
\(\Rightarrow p^3+2=27+2=29\) là số nguyên tố
Vậy nếu \(p\) và \(p^2+2\) là số nguyên tố thì \(p^3+2\) cũng là số nguyên tố.
p chia 3 dư 1 => p2+2 chia hết cho 3 mà p2 +2 là số nguyên tố => p2+2 =3 => p=1 => vô lý
p chia 3 dư 2 => p2+2 chia hết cho 3 => vô lý
p chia hết cho 3 mà p là số nguyên tố => p=3 => p2+2=11 (đúng) và p3+p2+1=37( đúng)
=> p=3