K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2022

bài này tui làm rồi mà quên rồi =)))

1 tháng 1 2022

Answer:

Mình nghĩ đề là  \(p^3+2\) mới đúng chứ nhỉ?

Ta nhận xét được: 

Mọi số nguyên tố lớn hơn 3 thì chia cho 3 đề có dạng: \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\left(k\inℕ^∗\right)\)

\(\orbr{\begin{cases}p=3k+1\Leftrightarrow p^2+2=9k^2+6k+3⋮3\\p=3k+2\Leftrightarrow p^2+2=9k^2-6k+6⋮3\end{cases}}\)

Vì p là số nguyên tố nên \(p\ge2\) khi đó trong cả hai trường hợp thì \(p^2+2>3\) và \(⋮3\)

\(\Rightarrow p^2+2\) là hợp số

\(\Rightarrow p^2+2\) là số nguyên tố khi \(p=3\) (Lúc này \(p^2+2=11\) là số nguyên tố)

\(\Rightarrow p^3+2=27+2=29\) là số nguyên tố

Vậy nếu \(p\) và \(p^2+2\) là số nguyên tố thì \(p^3+2\) cũng là số nguyên tố.

13 tháng 6 2017

Trần Văn Nghiệp

nếu p≡1(mod3) hoặc p≡2(mod3) thì

p2+8⋮3không phải số nguyên tố 

suy ra p=3

p2+2=11(là số nguyên tố)

13 tháng 6 2017

nếu p≡1(mod3) hoặc p≡2(mod3)

thì \(p^2+8⋮3\)(không phải số nguyên tố)

suy ra p=3

\(p^2+2=11\) (là số nguyên tố)

19 tháng 7 2016

p là số nguyên tố lớn hơn 3 => p=3k+1 hoặc p=3k+2

Nếu p=3k+1 => 2p+1=2(3k+1)+1=6k+2+1=6k+3 là hợp số (loại)

=>p=3k+2

=>4p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số (đpcm)

19 tháng 7 2016

Vì p là số nguyên tố lớn hơn 3 nên p sẽ có 2 dạng đó là: 3k + 1 và 3k + 2.

   Ta chia làm 2 trường hợp:

   - TH1: p = 3k + 1

   => 2p + 1 = 2.(3k + 1) + 1 = 6k + 2 + 1 = 6k + 3 = 3.(2k + 1) là hợp số. 

   => TH này bị loại vì theo đề bài 2p + 1 phải là số nguyên tố.

   - TH2: p = 3k + 2

   => 2p + 1 = 2.(3k + 2) + 1 = 6k + 4 + 5 = 6k + 5 là số nguyên tố.

   => TH này được chọn vì đúng theo yêu cầu của đề bài.

   => 4p + 1 = 4.(3k + 2) + 1 = 12k + 8 + 1 = 12k + 9 = 3.(4k + 3) là hợp số.

Vậy 4p + 1 là hợp số (ĐPCM).

   

13 tháng 5 2017

Vì 20p+1 là 1 số nguyên tố
=) 20p+1 không chia hết cho 3 
=) 20p+1 : 3 dư 1 và dư 2
*Với 20p+1 : 3 dư 1 thì =) 20p+1+2 \(⋮3\)
*Với 20p+1 : 3 dư 2 thì =) 20p+1+1\(⋮3\)=) 20p+2\(⋮3\)=) 2.(10p+1)\(⋮3\)
(=) 10p+1\(⋮3\)( Vì 2 không chia hết cho 3 )
Vậy 10p+1 là hợp số (Đpcm)

13 tháng 5 2017

Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 (k thuộc N).

* Với p=3k+1, ta có:

20p+1=20.(3k+1)+1=60k+20+1=60k+21 chia hết cho 3 => là hợp số=> loại

*Với p=3k+2, ta có:

20p+1=20.(3k+2)+1=60k+40+1=60k+41(là số nguyên tố)

10p+1=10.(3k+2)+1=30k+20+1=30k+21 chia hết cho 3 => là hợp số

Vậy với p là số nguyên tố lớn hơn 3 và 20p+1 cũng là số nguyên tố thì 10p+1 là hợp số.

13 tháng 5 2018

Nếu p không chia hết cho 3 => p \(\ge2\)

Ta ó : Với mọi số chính phương không chia hết cho 3 thì chỉ chi cho 3 dư 1 

Do đó \(p^2+2\equiv0\left(mod3\right)\)

Suy ra , để p2 + 2 là số nguyên tố thì \(p^2+1=3\) => p = 1 (vô lý)

Vậy , để thỏa mãn đề bài thì p phải chia hết cho 3 đồng thời là số nguyên tố 

tức p = 3 thì thõa mãn đề bài 

19 tháng 7 2016

Vì p là số nguyên tố lớn hơn 3 nên p sẽ có 2 dạng đó là: 3k + 1 và 3k + 2.

   Ta chia làm 2 trường hợp:

   - TH1: p = 3k + 1

   => 2p + 1 = 2.(3k + 1) + 1 = 6k + 2 + 1 = 6k + 3 = 3.(2k + 1) là hợp số. 

   => TH này bị loại vì theo đề bài 2p + 1 phải là số nguyên tố.

   - TH2: p = 3k + 2

   => 2p + 1 = 2.(3k + 2) + 1 = 6k + 4 + 5 = 6k + 5 là số nguyên tố.

   => TH này được chọn vì đúng theo yêu cầu của đề bài.

   => 4p + 1 = 4.(3k + 2) + 1 = 12k + 8 + 1 = 12k + 9 = 3.(4k + 3) là hợp số.

Vậy 4p + 1 là hợp số (ĐPCM).

19 tháng 7 2016
Ta có  p là ; snt lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 +) Với p=3k+1

Ta có : 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) 

=>\(p\ne3k+1\)

+) Với p=3k+2

Ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 

Vì \(p\ne3k+1\) nên ta chộn trường hợp này

=> 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9=3(4k+3)    (chia hết cho 3)

Vậy 4p+1 là hợp số 

=>đpcm