K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2020

\(B=\frac{x+1}{\left|x-2\right|}\left(ĐKXĐ:x\ne2\right)\)

ta có\(\left|x-2\right|\ge0\Rightarrow\frac{x+1}{\left|x-2\right|}\le0\)

dấu = xảy ra khi x+1=0=>x=-1

zậy

26 tháng 1 2015

4. A=7-x/x-5=(-(x-5)+2)/x-5=-1+2/x-5

A nhỏ nhất khi 2/x-5 nhỏ nhất.mà 2/x-5 nho nhất khi x-5 lớn nhất(a)

TH1: x-5>0=>x>5=>2/x-5>0(1)

Th2:x-5<0=>x<5=>2/x-5<0(2)

(1), (2)=>x-5<0(b)

(a),(b)=>x-5=-1=>x=4

vậy A nhỏ nhất là -3

 

2 tháng 7 2016

P lớn nhất <=> |x-2|+4 nhỏ nhất

\(\left|x-2\right|\ge0=>\left|x-2\right|+4\ge4\) (với mọi x)

\(=>P=\frac{1}{\left|x-2\right|+4}\le\frac{1}{4}\)

Dấu "="xảy ra \(< =>\left|x-2\right|=0< =>x=2\)

Vậy MaxP=1/4 khi x=2

2 tháng 7 2016

Giá trị lớn nhất của biểu thức P=1/Ix-2I+4 là \(\frac{118}{27}\) nha  

Trần Thị Hiền
10 tháng 5 2022

Bài 1: -Sửa đề: a,b,c>0

-Ta c/m: \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

-Vậy BĐT đã được c/m.

-Quay lại bài toán:

\(\sqrt{3\left(ab+bc+ca\right)}\le a+b+c=1\)

\(\Rightarrow3\left(ab+bc+ca\right)\le1\)

\(\Rightarrow ab+bc+ca\le\dfrac{1}{3}< \dfrac{1}{2}\left(đpcm\right)\)

10 tháng 5 2022

Bài 2:

-Ta c/m BĐT \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) với A,B là các phân thức.

\(\Leftrightarrow\left(\left|A\right|+\left|B\right|\right)^2\ge\left(\left|A+B\right|\right)^2\)

\(\Leftrightarrow A^2+2\left|A\right|\left|B\right|+B^2\ge A^2+2AB+B^2\)

\(\Leftrightarrow\left|A\right|\left|B\right|\ge AB\) (luôn đúng)

-Vậy BĐT đã được c/m.

-Dấu "=" xảy ra khi \(\left[{}\begin{matrix}A,B\ge0\\A,B\le0\end{matrix}\right.\)

-Quay lại bài toán:

\(P=\left|x-2\right|+\left|x-3\right|=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=\left|1\right|=1\)

\(P=1\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\le0\end{matrix}\right.\Leftrightarrow2\le x\le3\)

-Vậy \(P_{min}=1\)