chung minh rang 2 so le lien tiep thi nguyen to cung nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn vao day nha Chứng minh rằng :hai số lẻ liên tiếp là nguyên tố cùng nhau roi tick cho mik
Gọi hai số đó là:2k+1 và 2k+3(k thuộc N) và ƯCLN(2k+1,2k+3)=d
=>2k+1 chia hết cho d và 2k+3 chia hết cho d
=>(2k+1)-(2k+3) chia hết cho d
=>2 chia hết cho d =>ƯCLN(2k+1,2k+3) thuộc 1 hoặc 2
Mà 2k+1 và 2k+3 là số lẻ
=>ƯCLN(2k+1,2k+3)=1
=>2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
Gọi số thứ nhất là n, số thứ 2 là n+1, ƯC(n,n+1) = a
Ta có: n chia hết cho a (1)
n+1 chia hết cho a (2)
Từ (1) và (2) suy ra:
n+1-n chia hết cho a
=> 1 chia hết cho a
=> a=1
=> ƯC(n,n+1)=1
=> n và n+1 là hai số nguyên tố cùng nhau
Vậy hai số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau
k cho mk nha!
Gọi số thứ nhất là n, số thứ 2 là n+1, ƯC(n,n+1) = a
Ta có: n chia hết cho a (1)
n+1 chia hết cho a (2)
Từ (1) và (2) suy ra:
n+1-n chia hết cho a
=> 1 chia hết cho a
=> a=1
=> ƯC(n,n+1)=1
=> n và n+1 là hai số nguyên tố cùng nhau
Vậy hai số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau
TK!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1)
gọi ba số tự nhiên liên tiếp là a;a+1;a+2
ta có :
a+(a+1)+(a+2)=3.a+3=3.(a+1) chia hết cho 3
=>dpcm
2) gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2a;a+3;a+4
ta có :a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5a+2.5=5(a+2) chia hết cho 5
=>dpcm
Đặt \(A=ab-a-b+1=\left(ab-a\right)-\left(b-1\right)=a\left(b-1\right)-\left(b-1\right)=\left(a-1\right)\left(b-1\right)\)
Mà a,b là bình phương hai số lẻ liên tiếp nên
\(\Rightarrow\hept{\begin{cases}a=\left(2k-1\right)^2\\b=\left(2k+1\right)^2\end{cases}}\)
\(\Rightarrow A=\left[\left(2k-1\right)^2-1\right]\left[\left(2k+1\right)^2-1\right]\)
\(\Rightarrow A=\left(4k^2-4k\right)\left(4k^2+4k\right)\)
\(\Rightarrow A=16k^4-16k^2\)
\(\Rightarrow A=16k^2\left(k^2-1\right)\)
\(\Rightarrow A=16k\left(k-1\right)k\left(k+1\right)\)
Ta thấy: \(A⋮16\)
Mà \(\left(k-1\right)k\left(k+1\right)\)là tích của ba số liên tiếp
\(\Rightarrow A⋮3\)
Vậy \(A⋮48\left(48=16.3\right)\)
Hay \(\left(ab-a-b+1\right)⋮48\)
Số chẵn có dạng: 2n
Tổng của 5 số chẵn liên tiếp là:
S = 2n + 2n + 2 + 2n + 4 + 2n + 6 + 2n + 8 = 10n + 20
S = 10.(n +2)⋮ 10(đpcm)
Số lẻ có dạng: 2n + 1
5 số lẻ liên tiếp có dạng:
S = 2n + 1 + 2n + 3 + 2n + 5 + 2n + 7 + 2n + 9
S = 10n + 15
S = 10.(n + 1) + 5
⇒ S ⋮ 10 dư 5 (đpcm)
3 bo so do la 3,7,11
Vì 2,3 là 2 snt đầu tiên thì ta có
Nếu snt đầu tiên là 2 thi ta có cặp 2+4=6,6+4=10 mà 2 số 6,10 là hợp số(loại)
Nếu snt đầu tiên là 3 thì ta có cặp 3+4=7,7+4=11 và cả 3 số 3,7,11 đều là snt(nhận)
Goi ba so chan lien tiep la \(a;a+2;a+4\)
\(\Rightarrow a+a+2+a+4=3a+6\)
Vì a là số chẵn nên a chia hết cho 2 \(\Rightarrow3a⋮6\)
\(\Rightarrow3a+6⋮6\)
Vậy tổng ba số chẵn liên tiêp chia hết cho 6