K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10

A = \(\dfrac{3}{4}\).\(\dfrac{8}{9}\).\(\dfrac{15}{16}\)...\(\dfrac{9999}{10000}\)

A = \(\dfrac{1.3.2.4..3.5......99.101}{2.2.3.3.4.4....100.100}\)

A = \(\dfrac{1.2.3..4.5.....99}{2.3.4.5.....99.100}\).\(\dfrac{3.4.5....100.101}{2.3.4.5...100}\)

A = \(\dfrac{1}{100}\).\(\dfrac{101}{2}\)

A = \(\dfrac{101}{200}\)

14 tháng 10

2; B = (1 - \(\dfrac{1}{2}\)).(1 - \(\dfrac{1}{8}\))...(1 - \(\dfrac{1}{n+1}\))

   Xem lại đề bài.

a) Ta có: \(A=\dfrac{16^8-1}{\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)

\(=\dfrac{2^{32}-1}{\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)

\(=\dfrac{2^{32}-1}{\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)

\(=\dfrac{2^{32}-1}{\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)

\(=\dfrac{2^{32}-1}{\left(2^{16}-1\right)\left(2^{16}+1\right)}\)

\(=\dfrac{2^{32}-1}{2^{32}-1}=1\)

b) Ta có: \(B=\dfrac{\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{9^{16}-1}\)

\(=\dfrac{\left(3^2-1\right)\cdot\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)

\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)

\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}\)

\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}=\dfrac{1}{2}\)

11 tháng 7 2021

mk cảm ơn ah

 

17 tháng 12 2016

Câu này mình vừa mới giúp bạn ở bên trên đấy.Bạn xem lại nhé!

17 tháng 12 2016

câu đây mk ghi lộn

17 tháng 12 2016

Đặt A=(1/2)^0+(1/2)^1+(1/2)^2+.............+(1/2)^20

suy ra 1/2A=(1/2)^1+(1/2)^2+(1/2)^3+..........+(1/2)^21

suy ra A-1/2A=[(1/2)^0+(1/2)^1+(1/2)^2+........+(1/2)^20]-[(1/2)^1+(1/2)^2+(1/2)^3+.........+(1/2)^21]

suy ra 1/2A=(1/2)^0-(1/2)^21

          1/2A=1-(1/2)^21

              A=[1-(1/2)^21]:1/2

              A=[1-(1/2)^21].2

              A=2-(1/2)^21.2

              A=2-(1/2)^20

4 tháng 8 2017
(x+y)^2 - 4(x+y) + 1 = 3^2 - 4.3 +2 = -2
4 tháng 8 2017

Chả bik x- y= 5 có phải trong đề ko, giờ giải x+y = 3 trước

Ta có x2+y2 + 2xy - 4x - 4y + 1 = (x2+ 2xy + y2) -  4 ( x+y) + 1 = (x+y)^2 - 4(x+y) + 1  (1)

Thay x+y = 3 vào 1, có: 

3^2 - 4.3 + 1 = 9-12 + 1 = -2 

Vậy GTBT x2+y2 + 2xy - 4x - 4y + 1  vs x+ y = 3 là -2

5 tháng 1 2016

= 1

tick đi mink giải thích cho .  hihihihihihihihiihihiiiiiiiiiiiiiiii

21 tháng 7

A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)  + \(\dfrac{1}{4}-\dfrac{1}{5}\)\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)

A = 1

20 tháng 6 2020

6/7+5/8÷5-3/16×(-2)²

=6/7+1/8-3/4

=55/56-3/4

=13/56

b.2/3 + 1/3.( -4/9 + 5/6 ) : 7/12

   =2/3 + 1/3. ( -8/18 + 15/18 ) : 7/12

    =2/3 + 1/3 . 7/18 : 7/12

      =2/3 + 7/54 : 7/12

      = 2/3 + 2/9

       =6/9 + 2/9

        = 8/9