Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
b) \(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2.7+37=100\)
c) \(C=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2.5+10=25\)
a) \(A=x^2+2xy+y^2-4x-4v+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
Ta có
\(2\left(x^3+y^3\right)=2\left(x^3+3xy\left(x+y\right)+y^3\right)-6xy\left(x+y\right)\)
\(=2\left(x+y\right)^3-6xy=2-6xy\)
Vậy ta có
\(B=2-6xy-3\left(x^2+y^2\right)=2-3\left(x+y\right)^2=-1\)
\(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)
\(=20x^3-10x^2+5x-20x^3+10x^2+4x\)
\(=9x=9.15=135\)
\(x^2+4y^2-5x+10y-4xy+20\)
\(=x^2-4xy+4y^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}-\frac{25}{4}+20\)
\(=\left(x-2y\right)^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}+\frac{55}{4}\)
\(=\left(x-2y-\frac{5}{2}\right)^2+\frac{55}{4}\)Thay x - 2y = 5 ta được :
\(=\left(5-\frac{5}{2}\right)^2+\frac{55}{4}=20\)
\(B=x^2-2xy-2x+2y+y^2\)
\(=x^2-2xy+y^2-2\left(x-y\right)\)
\(=\left(x-y\right)^2-2\left(x-1\right)\)Thay x = y + 1 => x - y = 1 ta được :
\(=1-2=-1\)
Chả bik x- y= 5 có phải trong đề ko, giờ giải x+y = 3 trước
Ta có x2+y2 + 2xy - 4x - 4y + 1 = (x2+ 2xy + y2) - 4 ( x+y) + 1 = (x+y)^2 - 4(x+y) + 1 (1)
Thay x+y = 3 vào 1, có:
3^2 - 4.3 + 1 = 9-12 + 1 = -2
Vậy GTBT x2+y2 + 2xy - 4x - 4y + 1 vs x+ y = 3 là -2