K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2015

vd:

12=3.4

1122=33.34

111222=333.334

11112222=3333.3334

...

=> A=111...(n số 1)222...(n số 2) là tích 2 stn liên tíêp

4 tháng 9 2015

dặt 111.....1(n số 1)=a=>10^n=9a+1

=>A=a.10^n+2a=a(9a+1)+2a=9a^2+a+2a=9a^2+3a=3a(3a+1)

a=3333.........3(n thửa số 3).33333333..34(n-1 thừa số 3)

11 tháng 10 2021

\(a,\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\\ =3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\\ b,\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}\\ =\dfrac{\sqrt{n}-\sqrt{n+1}}{-1}=\sqrt{n+1}-\sqrt{n}\)

11 tháng 10 2021

a) \(\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}\)

\(=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\)

\(=3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\)

b) \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

22 tháng 10 2019

   a. Vì hai số tự nhiên liên tiếp sẽ có một số chia hết cho 2 nên tích bất kì hai số tự nhiên liên tiếp nào cũng chia hết cho 2.

   b. Ví dụ n = số chẵn ( 2 )

22 + 2 + 1 = 7 ko chia hết cho 2 và 2 ( n )

     Ví dụ n = số lẻ ( 7 )

72 + 7 + 1 = 57 ko chia hết cho 2 và 7

Vậy nên A = n+ n + 1 ko chia hết cho 2 và n

22 tháng 10 2019

a/ Tích của 2 số tự nhiên liên tiếp là tích của 1 số lẻ với 1 số chẵn nên có kết quả là chẵn => chia hết cho 2

b/

+ Nếu N lẻ => N2 lẻ => N2+N chẵn => N2+N+1 lẻ => không chia hết cho 2

\(\frac{N^2+N+1}{N}=N+1+\frac{1}{N}\left(N\ne0\right)\)

A không chia hết cho N trừ \(N=\pm1\)

15 tháng 10 2015

b;

bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.

.......................................................................3......n=3k và 3k + 1 và 3k+2

c;

bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9

d;tương tự b

e;g;tương tự a

1.Áp dụng định lý Fermat nhỏ.

27 tháng 8 2019

1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)

và \(5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

Nếu \(a^5⋮5\)=> a chia hết cho 5