K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 6 2021

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)

\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Do đó:

\(VT=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(VT=1-\dfrac{1}{\sqrt{n+1}}< 1\) (đpcm)

26 tháng 2 2022

 Xét số hạng tổng quát ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)< \sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\sqrt{n}\cdot\frac{2}{\sqrt{n}}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

Áp dụng vào bài tập, ta có:

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+...+\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

\(=2-\frac{2}{\sqrt{n+1}}< 2\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Lời giải:
Xét số hạng tổng quát:
\(\frac{1}{(n+1)\sqrt{n}}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{(n+1)\sqrt{n}}<\frac{(\sqrt{n+1}-\sqrt{n}).2\sqrt{n+1}}{(n+1)\sqrt{n}}\)

Hay \(\frac{1}{(n+1)\sqrt{n}}< \frac{2\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

Áp dụng vào bài toán:

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{(n+1)\sqrt{n}}< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+\frac{2}{\sqrt{3}}-\frac{2}{\sqrt{4}}+....+\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}=2-\frac{2}{\sqrt{n+1}}< 2\)

Ta có đpcm.

15 tháng 4 2016

Gọi tổng trên là A

A = 1/2.2 + 1/3.3 +......+ 1/n.n

A < 1/1.2 + 1/2.3 +.......+ 1/(n-1)n

A < 1 - 1/2 + 1/2 - 1/3 +..........+ 1/n-1 - 1/n

A < 1 - 1/n < 1

=> A < 1 (đpcm)

Cái này không phải toán lớp 9 đâu bn ạ,lớp 6 có rồi !!!

15 tháng 4 2016

ai bảo bạn là toán 6! 

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Lời giải:

Đặt \(P=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{n}}\)

Ta có:

\(\frac{P}{2}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{2\sqrt{4}}+...+\frac{1}{2\sqrt{n}}\)

\(< \frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+....+\frac{1}{\sqrt{n-1}+\sqrt{n}}(1)\)

Mà:

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+....+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\frac{(\sqrt{2}-\sqrt{1})(\sqrt{2}+\sqrt{1})}{\sqrt{1}+\sqrt{2}}+\frac{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}{\sqrt{2}+\sqrt{3}}+\frac{(\sqrt{4}-\sqrt{3})(\sqrt{4}+\sqrt{3})}{\sqrt{3}+\sqrt{4}}+....+\frac{(\sqrt{n}-\sqrt{n-1})(\sqrt{n}+\sqrt{n-1})}{\sqrt{n-1}+\sqrt{n}}\)

\(=(\sqrt{2}-\sqrt{1})+(\sqrt{3}-\sqrt{2})+...+(\sqrt{n}-\sqrt{n-1})\)

\(=\sqrt{n}-1(2)\)

Từ \((1);(2)\Rightarrow \frac{P}{2}< \sqrt{n}-1\Rightarrow P< 2\sqrt{n}-2\)

-----------------------

Tương tự:

\(\frac{P}{2}>\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}+\frac{1}{2\sqrt{n}}=\sqrt{n}-\sqrt{2}+\frac{1}{2\sqrt{n}}\)

\(\Rightarrow P> 2\sqrt{n}-2\sqrt{2}+\frac{1}{\sqrt{n}}\)

\(2\sqrt{n}-2\sqrt{2}+\frac{1}{\sqrt{n}}> 2\sqrt{n}-3\Rightarrow P>2\sqrt{n}-3\)

Ta có đpcm.

1 tháng 1 2016

có biết đâu mà giúp, mong bạn thông cảm cho. Nhớ tick cho mình với

26 tháng 9 2019

bú lồn mả bà mày trả 

26 tháng 9 2019

bạn Phạm Hữu Tiến, bạn mất dạy vừa thôi nha mình chưa làm j bạn, mình chỉ hỏi bài các bạn thôi, bạn không trả lời đc thì thôi chứ sao bạn lại nói tục như vậy?????????