S=\(\frac{1}{5^2}+\frac{1}{5^4}+...+\frac{1}{5^{2014}}< \frac{1}{24}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{2014}{5^{2014}}\)
\(5S=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{2014}{5^{2013}}\)
\(\Rightarrow5S-S=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}-\frac{2014}{5^{2014}}\)
\(S=\frac{1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}-\frac{2014}{5^{2014}}}{4}\)
Xét \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}\)
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\)
\(5A-A=1-\frac{1}{5^{2013}}\Leftrightarrow A=\frac{1-\frac{1}{5^{2013}}}{4}=\frac{1}{4}-\frac{1}{4.5^{2013}}\)
\(\Rightarrow S=\frac{1+\frac{1}{4}-\left(\frac{1}{4.5^{2013}}+\frac{2014}{5^{2014}}\right)}{4}=\frac{5}{16}-\frac{\frac{1}{4.5^{2013}}+\frac{2014}{5^{2014}}}{4}< \frac{1}{3}\)
Ta có: \(B=\frac{1}{5^2}+\frac{1}{5^4}+\frac{1}{5^6}+...+\frac{1}{5^{2014}}\)
=> \(25B=1+\frac{1}{5^2}+\frac{1}{5^4}+...+\frac{1}{5^{2012}}\)
=> 25B-B=24B= \(1-\frac{1}{5^{2014}}\)
=> \(B=\frac{1-\frac{1}{5^{2014}}}{24}< \frac{1}{24}\)
=> đpcm
em thử nhân S với 5 rồi lấy 5S= S thử đi
chị làm toàn như vậy
ko bt có đc ko nữa
ở tử số ta làm thế này
\(TS=\left(1+\frac{1}{2014}\right)+\left(1+\frac{1}{2013}\right)+\left(1+\frac{1}{2012}\right)+...+\left(1+\frac{2013}{2}\right)\)
\(TS=2015\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}+...+\frac{1}{2}\right)\)
\(\frac{TS}{MS}=2015\)
Đặt phân thức trên là D
=> D=(1+1+1+1+...+1+2013/2+2012/3+...+2/2013+1/2014)/(1/2+1/3+1/4+...+1/2014)
=> D=(1+2013/2+1+2012/3+1+2011/4+...+1+2/2013+1+1/2014+1)/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=(2015/2+2015/3+2015/4+...+2015/2013+2015/2014+1)/(1/2+1/3+1/4+...+1/2014)
=> D=[2015*(1/2+1/3+1/4+1/5+....+1/2014)]/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=2015
\(S=\frac{1}{5^2}+\frac{1}{5^4}+...+\frac{1}{5^{2014}}\)
=> \(5^2S=1+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\)
=> \(25S-S=\left(1+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\right)-\left(\frac{1}{5^2}+\frac{1}{5^4}+...+\frac{1}{5^{2014}}\right)\)
=> \(24S=1-\frac{1}{5^{2014}}\)
=> \(S=\left(1-\frac{1}{5^{2014}}\right):24\)
=> \(S=\frac{1}{24}-\frac{1}{24.5^{2014}}< \frac{1}{24}\)
nhiều khi mún học lại lớp 6 quá