K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2019

\(S=\frac{1}{5^2}+\frac{1}{5^4}+...+\frac{1}{5^{2014}}\)

=> \(5^2S=1+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\)

=> \(25S-S=\left(1+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\right)-\left(\frac{1}{5^2}+\frac{1}{5^4}+...+\frac{1}{5^{2014}}\right)\)

=> \(24S=1-\frac{1}{5^{2014}}\)

=> \(S=\left(1-\frac{1}{5^{2014}}\right):24\)

=> \(S=\frac{1}{24}-\frac{1}{24.5^{2014}}< \frac{1}{24}\)

17 tháng 6 2019

nhiều khi mún học lại lớp 6 quá

17 tháng 2 2018

\(S=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{2014}{5^{2014}}\)
\(5S=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{2014}{5^{2013}}\)
\(\Rightarrow5S-S=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}-\frac{2014}{5^{2014}}\)
\(S=\frac{1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}-\frac{2014}{5^{2014}}}{4}\)
Xét \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}\)
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\)
\(5A-A=1-\frac{1}{5^{2013}}\Leftrightarrow A=\frac{1-\frac{1}{5^{2013}}}{4}=\frac{1}{4}-\frac{1}{4.5^{2013}}\)
\(\Rightarrow S=\frac{1+\frac{1}{4}-\left(\frac{1}{4.5^{2013}}+\frac{2014}{5^{2014}}\right)}{4}=\frac{5}{16}-\frac{\frac{1}{4.5^{2013}}+\frac{2014}{5^{2014}}}{4}< \frac{1}{3}\)

 

25 tháng 2 2017

2.a) Vào question 126036

b) Vào question 68660

31 tháng 3 2018

Ta có : 

\(S=\frac{1}{5^2}+\frac{1}{5^4}+\frac{1}{5^6}+\frac{...1}{5^{2018}}\)

\(25S=1+\frac{1}{5^2}+\frac{1}{5^4}+...+\frac{1}{5^{2016}}\)

\(25S-S=\left(1+\frac{1}{5^2}+\frac{1}{5^4}+...+\frac{1}{5^{2016}}\right)-\left(\frac{1}{5^2}+\frac{1}{5^4}+\frac{1}{5^6}+...+\frac{1}{5^{2018}}\right)\)

\(24S=1-\frac{1}{5^{2018}}\)

\(S=\frac{1-\frac{1}{5^{2018}}}{24}\)

\(S=\frac{\frac{5^{2018}-1}{5^{2018}}}{24}< \frac{1}{24}\)

Vậy \(S< \frac{1}{24}\)

Chúc bạn học tốt ~ 

31 tháng 3 2018

thanks bạn nhiều

13 tháng 3 2018

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}-1-\frac{1}{2}-...-\frac{1}{1007}\)

\(=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}\)   (đpcm)

a) -1/3

b)8/3

c)2

k cho mk nha mk cảm ơn nhiều

\(1\frac{1}{30}:\left(24\frac{1}{6}-24\frac{1}{5}\right)-\frac{1\frac{1}{2}-\frac{3}{4}}{4x-\frac{1}{2}}=\left(-1\frac{1}{15}\right):\left(8\frac{1}{5}-8\frac{1}{3}\right)\)

\(\Rightarrow\frac{31}{30}:\left(\frac{145}{6}-\frac{121}{5}\right)-\frac{\frac{3}{2}-\frac{3}{4}}{4x-\frac{1}{2}}=\left(\frac{-16}{15}\right):\left(\frac{41}{5}-\frac{25}{3}\right)\)

\(\Rightarrow\frac{31}{30}:\left(\frac{725}{30}-\frac{726}{30}\right)-\frac{\frac{6}{4}-\frac{3}{4}}{4x-\frac{1}{2}}=\left(\frac{-16}{15}\right):\left(\frac{123}{15}-\frac{125}{15}\right)\)

\(\Rightarrow\frac{31}{30}:\frac{-1}{30}-\frac{\frac{3}{4}}{4x-\frac{1}{2}}=\frac{-16}{15}:\frac{-2}{15}\)

\(\Rightarrow\frac{31}{30}.\frac{30}{-1}-\frac{3}{4}:\left(4x-\frac{1}{2}\right)=\frac{-16}{15}.\frac{15}{-2}\)

\(\Rightarrow\left(-31\right)-\frac{3}{4}:\left(4x-\frac{1}{2}\right)=8\)

\(\Rightarrow\frac{3}{4}:\left(4x-\frac{1}{2}\right)=\left(-31\right)-8\)

\(\Rightarrow\frac{3}{4}:\left(4x-\frac{1}{2}\right)=\left(-39\right)\)

\(\Rightarrow4x-\frac{1}{2}=\frac{3}{4}:\left(-39\right)\)

\(\Rightarrow4x-\frac{1}{2}=\frac{3}{4}.\frac{-1}{39}\)

\(\Rightarrow4x-\frac{1}{2}=\frac{-1}{52}\)

\(\Rightarrow4x=\frac{-1}{52}+\frac{1}{2}\)

\(\Rightarrow4x=\frac{-1}{52}+\frac{26}{52}\)

\(\Rightarrow4x=\frac{25}{52}\)

\(\Rightarrow x=\frac{25}{52}:4\)

\(\Rightarrow x=\frac{25}{52}.\frac{1}{4}\)

\(\Rightarrow x=\frac{25}{208}\)

Vậy \(x=\frac{25}{208}\)

Chúc bn học tốt

6 tháng 3 2020

thank you