K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

Ta có : 

\(S=\frac{1}{5^2}+\frac{1}{5^4}+\frac{1}{5^6}+\frac{...1}{5^{2018}}\)

\(25S=1+\frac{1}{5^2}+\frac{1}{5^4}+...+\frac{1}{5^{2016}}\)

\(25S-S=\left(1+\frac{1}{5^2}+\frac{1}{5^4}+...+\frac{1}{5^{2016}}\right)-\left(\frac{1}{5^2}+\frac{1}{5^4}+\frac{1}{5^6}+...+\frac{1}{5^{2018}}\right)\)

\(24S=1-\frac{1}{5^{2018}}\)

\(S=\frac{1-\frac{1}{5^{2018}}}{24}\)

\(S=\frac{\frac{5^{2018}-1}{5^{2018}}}{24}< \frac{1}{24}\)

Vậy \(S< \frac{1}{24}\)

Chúc bạn học tốt ~ 

31 tháng 3 2018

thanks bạn nhiều