K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2018

Ta có: \(B=\frac{1}{5^2}+\frac{1}{5^4}+\frac{1}{5^6}+...+\frac{1}{5^{2014}}\)

=> \(25B=1+\frac{1}{5^2}+\frac{1}{5^4}+...+\frac{1}{5^{2012}}\)

=> 25B-B=24B= \(1-\frac{1}{5^{2014}}\)

=> \(B=\frac{1-\frac{1}{5^{2014}}}{24}< \frac{1}{24}\)

=> đpcm

7 tháng 1 2016

Mình nhân S với 5 rồi rút gọn

ko can biet: làm đc mk làm lâu r :<

NV
5 tháng 11 2019

\(M=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}+\frac{1}{5^{2014}}\)

\(5M=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}\)

\(\Rightarrow4M=1-\frac{1}{5^{2014}}< 1\)

\(\Rightarrow M< \frac{1}{4}< \frac{1}{3}\)

13 tháng 11 2016

help me

25 tháng 4 2017

sao nhiều dữ vậy

NV
10 tháng 3 2019

Đề sai, đề đúng phải là \(VT< \frac{1}{20}\)

Dễ dàng chứng minh đề sai, ta có:

\(\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2006}}>\frac{1}{5^2}+\frac{1}{5^3}=\frac{6}{125}>\frac{1}{24}\)

Còn chứng minh \(VT< \frac{1}{20}\) thì như sau:

\(A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2006}}\)

\(\Rightarrow5A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2005}}\)

\(\Rightarrow5A-\frac{1}{5}+\frac{1}{5^{2006}}=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2006}}\)

\(\Rightarrow5A-\frac{1}{5}+\frac{1}{5^{2006}}=A\)

\(\Rightarrow4A=\frac{1}{5}-\frac{1}{5^{2006}}< \frac{1}{5}\)

\(\Rightarrow A< \frac{1}{20}\)

10 tháng 3 2019

Mơn cậu nha!!

13 tháng 3 2019

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}-\frac{5}{4}\cdot\frac{13}{99}+\frac{5}{99}\cdot\frac{1}{4}\)

\(A=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)-\frac{13}{4}\cdot\frac{5}{99}+\frac{5}{99}\cdot\frac{1}{4}\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{5}{99}\cdot\left(\frac{13}{4}-\frac{1}{4}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)-\frac{5}{99}\cdot3\)

\(A=\frac{1}{2}\cdot\frac{32}{99}-\frac{5}{33}\)

\(A=\frac{16}{99}-\frac{5}{33}=\frac{1}{99}\)

13 tháng 3 2019

3/\(7a+b=0\Rightarrow b=-7a\)

\(f\left(x\right)=ax^2-7ax+c\).Ta có: \(f\left(10\right)=100a-70a+c=30a+c\)

\(f\left(-3\right)=30a+c\).Nhân theo vế ta có đpcm:

\(f\left(10\right).f\left(-3\right)=\left(30a+c\right)^2\ge0\) (đúng)