Tìm số dư khi chia số A = 7^1 + 7^2 + 7^3 + ... + 7^2013 cho 19
Làm ơn giúp mình với :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\\ \left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+...+7^{2018}\left(1+7+7^2\right)\\ \left(1+7+7^2\right)\left(1+7^3+7^6+...+7^{2018}\right)\\ 57\left(1+7^3+7^6+...+7^{2018}\right)⋮57\)
A=1+7+72+...+72019+72020
=1+(7+72+73)+(74+75+76)+...+(72018+72019+72020)
=1+7(1+7+72)+74(1+7+72)+...+72018(1+7+72)
=1+7x57+74x57+...+72018x57=1+57(7+74+...+72018)
=>A chia cho 57 dư 1.vì 57(7+74+...+72018)⋮57.
A = (7+7^2+7^3)+(7^4+7^5+7^6)+.....(+7^2011+7^2012+7^2013)
= (7+7^2+7^3)+7^3.(7+7^2+7^3)+....+7^2010.(7+7^2+7^3)
= 399 + 7^3.399 + .... + 7^2010 . 399
= 399.(1+7^3+....+7^2010) chia hết cho 399
Mà 399 chia hết cho 19 => A chia hết cho 19
Tìm số dư của số 718 + 18 . 3 - 7 khi chia cho 9 là mấy?
Giải thích cụ thể giúp mình với nha! Cám ơn!
Lời giải:
Gọi số cần tìm là $a$
Theo bài ra thì:
$a-3\vdots 4\Rightarrow a+1\vdots 4$
$a-4\vdots 5\Rightarrow a+1\vdots 5$
$a-5\vdots 6\Rightarrow a+1\vdots 6$
Tức là $a+1$ là bội chung của $4,5,6$
$\Rightarrow a+1\vdots \text{BCNN(4,5,6)}$
$\Rightarrow a+1\vdots 60$
Đặt $a=60k-1$ với $k$ là số tự nhiên
$a\vdots 7$ tức là $60k-1\vdots 7$
$\Leftrightarrow 60k-1-56k\vdots 7$
$\Leftrightarrow 4k-1\vdots 7$
$\Leftrightarrow 4k-8\vdots 7$
$\Leftrightarrow 4(k-2)\vdots 7$
$\Leftrightarrow k-2\vdots 7$
Để $a$ nhỏ nhất thì $k$ nhỏ nhất. Trong trường hợp này, số $k$ tự nhiên nhỏ nhất là $2$
$\Rightarrow a=60k-1=60.2-1=119$
a chia cho 7 dư 4 nên a = 7k + 4 (k\(\in\)N)
a chia cho 9 dư 6 nên a = 9q + 6 (q\(\in\)N)
\(\Rightarrow\)a + 3 = 7k + 7 chia hết cho 7 .
a + 3 = 9q + 9 chia hết cho 9 .
Mà (7 ; 9) = 1 nên a + 3 chia hết cho 63
\(\Rightarrow\)a + 3 = 63m (m\(\in\)N)
a + 63 - 60 = 63m
a = 63m - 63 + 60
a = 63(m - 1) + 60
Vậy a chia 63 dư 60
Vì a chia 7 dư 5 => a=7m+5 \(\left(m\in N\right)\)
b chia 7 dư 2 => b=7n+2 \(\left(n\in N\right)\)
a) \(a+b=7n+2+7m+5=7n+7m+7=7.\left(m+n+1\right)\)
ta có: \(7⋮7\Rightarrow7.\left(m+n+1\right)⋮7\left(v\text{ì}m,n\in N\right)\)
\(\Rightarrow\left(a+b\right)⋮7\)
=> (a+b):7 dư 0
Vậy (a+b):7 dư 0
b) \(a.b=\left(7m+5\right).\left(7n+2\right)=49mn+14m+35n+10=7.\left(7mn+2m+5n+1\right)+3\)
Có \(\hept{\begin{cases}7.\left(7mn+2m+5n+1\right)⋮7\left(v\text{ì}7⋮7;m,n\in N\right)\\3:7=0d\text{ }\text{ư}3\end{cases}}\)
\(\Rightarrow7.\left(7mn+2m+5n+1\right)+3:7d\text{ư}3\)
\(\Rightarrow a.b:7d\text{ư}3\)
Vậy a.b:7 dư 3
Tham khảo nhé~
mình thấy bài này mấy lần rồi,,nhưng mình lại quên đáp án zùi
hay bạn thử vào gõ ý
Số cần tìm cộng thêm 1 đơn vị thì chia hết cho 2,3,4,5,6,7
Số chia hết 4,5,6,7 thì cũng chia hết cho 2 và 3
Số nhỏ nhất chia hết cho 4,5,6,7 là
4x5x6x7=840
Số nhỏ hơn 2000 lớn hơn 1000 thoả mãn đề bài là
840x2=1680
7^1 + 7^2 + ... + 7^2013
= ( 7^1 + 7^2 + 7^3 ) +.... + ( 7^2011 + 7^2012 + 7^2013 )
= 7^1 . ( 1 + 7 + 49 ) + .... + 7^2011( 1+ 7+ 49 )
= 7^1 . 57 + .... + 7^2011 . 57
= 7^1 . 19 . 3 + ... + 7^2011 . 19 .3
=> A chia cho 19 dư 0
Tick nha