Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7^1 + 7^2 + ... + 7^2013
= ( 7^1 + 7^2 + 7^3 ) +.... + ( 7^2011 + 7^2012 + 7^2013 )
= 7^1 . ( 1 + 7 + 49 ) + .... + 7^2011( 1+ 7+ 49 )
= 7^1 . 57 + .... + 7^2011 . 57
= 7^1 . 19 . 3 + ... + 7^2011 . 19 .3
=> A chia cho 19 dư 0
Tick nha
\(A=7^1+7^2+...+7^{2013}\)
\(A=\left(7^1+7^2+7^3\right)+\left(7^4+7^5+7^6\right)+...+\left(7^{2011}+7^{2012}+7^{2013}\right)\)
\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{2011}\left(1+7+7^2\right)\)
\(A=7.57+7^4.57+...+7^{2011}.57\)
\(A=57\left(7+7^4+...+7^{2011}\right)\)
\(A=19.3.\left(7+7^4+...+7^{2011}\right)\) chia hết cho 19
Vậy A chia 19 dư 0
1. Vì 143 có thể phân tích thành tích các stn = cách :143=11.13=1.143
Nên ta có bảng: x+1 1 143 11 13
2.y-5 143 1 13 11
x 0 142 10 12
y 74 3 9 8
rùi cậu tự ghi kết luận nha
tick cho mình nha!
A= 2+2^3+2^5+2^7+............+2^2013
A= (2+2^3)+(2^5+2^7)+............+(2^2011+2^2013)
A= 10+2^5.(2+2^3)+..................+2^2011.(2+2^3)
A= 10+2^5.10+...........+2^2011.10
=>A:5 dư 0
\(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\\ \left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+...+7^{2018}\left(1+7+7^2\right)\\ \left(1+7+7^2\right)\left(1+7^3+7^6+...+7^{2018}\right)\\ 57\left(1+7^3+7^6+...+7^{2018}\right)⋮57\)
A=1+7+72+...+72019+72020
=1+(7+72+73)+(74+75+76)+...+(72018+72019+72020)
=1+7(1+7+72)+74(1+7+72)+...+72018(1+7+72)
=1+7x57+74x57+...+72018x57=1+57(7+74+...+72018)
=>A chia cho 57 dư 1.vì 57(7+74+...+72018)⋮57.
A = (7+7^2+7^3)+(7^4+7^5+7^6)+.....(+7^2011+7^2012+7^2013)
= (7+7^2+7^3)+7^3.(7+7^2+7^3)+....+7^2010.(7+7^2+7^3)
= 399 + 7^3.399 + .... + 7^2010 . 399
= 399.(1+7^3+....+7^2010) chia hết cho 399
Mà 399 chia hết cho 19 => A chia hết cho 19