K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 6 2019

\(f\left(x\right)+2f'\left(x\right)+f''\left(x\right)=x^3+2x^2\)

\(\Leftrightarrow f\left(x\right)+f'\left(x\right)+f'\left(x\right)+f''\left(x\right)=x^3+2x^2\)

\(\Leftrightarrow f\left(x\right)+f'\left(x\right)+\left[f\left(x\right)+f'\left(x\right)\right]'=x^3+2x^2\)

Đặt \(f\left(x\right)+f'\left(x\right)=u\left(x\right)\) ta được:

\(u\left(x\right)+u'\left(x\right)=x^3+2x^2\)

\(\Leftrightarrow e^x.u\left(x\right)+e^x.u'\left(x\right)=e^x\left(x^3+2x^2\right)\)

\(\Leftrightarrow\left[e^x.u\left(x\right)\right]'=e^x\left(x^3+2x^2\right)\)

\(\Rightarrow e^x.u\left(x\right)=\int e^x\left(x^3+2x^2\right)dx=e^x\left(x^3-x^2+2x-2\right)+C\)

\(\Leftrightarrow e^x\left[f\left(x\right)+f'\left(x\right)\right]=e^x\left(x^3-x^2+2x-2\right)+C\)

Thay \(x=0\) vào ta được \(2=-2+C\Rightarrow C=4\)

\(\Rightarrow e^x.f\left(x\right)+e^x.f'\left(x\right)=e^x\left(x^3-x^2+2x-2\right)+4\)

\(\Leftrightarrow\left[e^x.f\left(x\right)\right]'=e^x\left(x^3-x^2+2x-2\right)+4\)

\(\Rightarrow e^x.f\left(x\right)=\int\left[e^x\left(x^3-x^2+2x-2\right)+4\right]dx\)

\(\Rightarrow e^x.f\left(x\right)=e^x\left(x^3-4x^2+10x-12\right)+4x+C_1\)

Thay \(x=0\) vào ta được: \(1=-12+C_1\Rightarrow C_1=13\)

\(\Rightarrow e^x.f\left(x\right)=e^x\left(x^3-4x^2+10x-12\right)+4x+13\)

\(\Rightarrow f\left(x\right)=x^3-4x^2+10x-12+\frac{4x+13}{e^x}\)

\(\Rightarrow\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\left(x^3-4x^2+10x-12\right)dx+\int\limits^1_0\left(4x+13\right).e^{-x}dx\)

Tích phân trước bạn tự tính, tích phân sau cũng đơn giản thôi:

Đặt \(\left\{{}\begin{matrix}u=4x+13\\dv=e^{-x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=4dx\\v=-e^{-x}\end{matrix}\right.\)

\(\Rightarrow I=-\left(4x+13\right).e^{-x}|^1_0+4\int\limits^1_0e^{-x}dx=\frac{-17}{e}+13-4.e^{-x}|^1_0=17-\frac{21}{e}\)

Casio cho kết quả tích phân trước là \(-\frac{97}{12}\)

Vậy \(\int\limits^1_0f\left(x\right)dx=\frac{107}{12}-\frac{21}{e}\)

7 tháng 4 2022

Tham khảo:

8 tháng 4 2022

refer

29 tháng 11 2018

16 tháng 12 2021

ta thay f(x)=-3 ta có:

2(-3)+3(-x)=5x-4

-6-3x=5x-4

-5x-3x=-6+4

-8x=-2

x=\(\dfrac{-2}{-8}\)

x=\(\dfrac{1}{4}\)

 

a: \(2\cdot f\left(3\right)=2\cdot\left(3^{19}+3^{18}+...+3+1\right)\)

Đặt B=3^19+3^18+...+3+1

=>3B=3^20+3^19+...+3^2+3

=>2B=3^20-1

=>2*f(3)=A

b: Chứng minh cái gì vậy bạn?

15 tháng 10 2019

Chọn A