K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

Ta có: \(x^2-2x+15=x^2-2x+1+14=\left(x-1\right)^2+14>0\)

=> đa thức luôn vô nghiệm

Lại có: \(\left(x-1\right)^2+14\ge14\)

=> GTNN = 14 . Dấu "=" xảy ra khi x = 1

11 tháng 5 2017

Thay x=-1 vào đa thứcf[x] ta có

f[x]=x2+2x+4

f[x]=-1.2+2.[-1]+4

f[x]=-2+[-2]+4

f[x]=-4+4=0 

đầu bài cho giá trị nhỏ nhất là 3 khi x=-1[mà 0 nhỏ hơn 3]

suy ra giả thiết của đầu bài đưa ra là đúng

NẾU CÂU TRẢ LỜI CỦA MÌNH SAI HAY ĐÚNG HAY GÓP Ý KIẾN VÀ BẤM NÚT DỤNG CHO MÌNH NHÉ 

14 tháng 9 2018

Ta có: P =  x 2  – 2x + 5 =  x 2  – 2x + 1 + 4 = x - 1 2  + 4

Vì  x - 1 2  ≥ 0 nên  x - 1 2  + 4 ≥ 4

Suy ra: P = 4 là giá trị bé nhất khi  x - 1 2  = 0 ⇒ x = 1

Vậy P = 4 là giá trị bé nhất của đa thức khi x = 1.

19 tháng 6 2021

bài này sao tìm gtnn đc @_@ ?

19 tháng 6 2021

bài này muốn tìm GTNN phải sửa thành \(P=x^2-2x+5\) nhé

\(=>P=x^2-2x+1+4=\left(x-1\right)^2+4\ge\)\(4\)

dấu"=" xảy ra<=>x=1

Vậy Min P=4 khi x=1

 

24 tháng 4 2017

\(M=\left(x^2+0,5x\right)+\left(0,5x+0,25\right)+0,75\)

\(M=x\left(x+0,5\right)+0,5\left(x+0,5\right)+0,75\)

\(M=\left(x+0,5\right)^2+0,75>0\)

\(\Rightarrow\) Đa thức M không có nghiệm

Đpcm

24 tháng 4 2017

bài này mình chỉ biết làm câu a thôi thông cảm:

M=x^2+x+1

x^2> hoặc =0 với mọi x

x> hoặc =0 với mọi x

1>0

Suy ra M=x^2+x+1 ko có nghiệm

b) mình chỉ biết làm GTLN thôi sorry

12 tháng 3 2022

Bài 2 : 

a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)

Dấu ''='' xảy ra khi x = 2 

b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)

Dấu ''='' xảy ra khi x = -1 

12 tháng 3 2022

 Bài 1 : 

a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)

c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)

21 tháng 4 2021

a)ta có \(\Delta=b^2-4ac\)=1\(^2\)-4*1*1=-3

=>phương trình vô nghiệm vì \(\Delta< 0\)

b)ta có x\(^2\)+x+1=x\(^2\)+2.x.\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+1-\(\dfrac{1}{4}\)=\(\left(x+\dfrac{1}{2}\right)^2\)+\(\dfrac{3}{4}\)

vì \(\left(x+\dfrac{1}{2}\right)^2\)​>0 \(\forall x\in R\)

\(\left(x+\dfrac{1}{2}\right)^2\)+\(\dfrac{3}{4}\)>\(\dfrac{3}{4}\)\(\forall x\in R\)

=>GTNN =3/4 khi và chỉ khi \(\left(x+\dfrac{1}{2}\right)^2=0\)<=>x=-\(\dfrac{1}{2}\)

22 tháng 6 2020

a) \(A\left(x\right)=0\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

b) \(A\left(x\right)=0\Leftrightarrow3x-1=0\Leftrightarrow x=\frac{1}{3}\)

c) \(A=\left|x-1\right|+\left|x-2019\right|=\left|x-1\right|+\left|2019-x\right|\ge\left|x-1+2019-x\right|=2018\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-1\ge0\\2019-x\ge0\end{cases}\Rightarrow}1\le x\le2019\)

11 tháng 9 2020

Bài 1.

( 1 - 3x )( x + 2 )

= 1( x + 2 ) - 3x( x + 2 )

= x + 2 - 3x2 - 6x 

= -3x2 - 5x + 2

= -3( x2 + 5/3x + 25/36 ) + 49/12

= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x

Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6

Vậy GTLN của biểu thức = 49/12 <=> x = -5/6

Bài 2.

A = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> A vô nghiệm ( > 0 mà :)) )

Bài 3.

M = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> đpcm

Bài 4.

A = -x2 + 18x - 81

= -( x2 - 18x + 81 )

= -( x - 9 )2 ≤ 0 ∀ x 

=> đpcm 

Bài 5. ( sửa thành luôn không dương nhé ;-; )

F = -x2 - 4x - 5

= -( x2 + 4x + 4 ) - 1

= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x

=> đpcm 

11 tháng 9 2020

Bài 2 

Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0

Đa thức A vô nghiệm

Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)

Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)

Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)

21 tháng 7 2021

`P=x^2-2x+5=(x^2-2x+1)+4=(x-1)^2+4`

`(x-1)^2>=0 <=> (x-1)^2+4>=4`

`=> P_(min)=4<=>x=1`.

21 tháng 7 2021

\(x^{2}-2x+5=(x-1)^{2}+4\)\(\ge\)4

Dấu "=" xảy ra khi\((x-1)^{2}=0\)\(\Leftrightarrow\)\(x=1\)

Vậy Min \(P=4 \) khi \(x=1\)