Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x=-1 vào đa thứcf[x] ta có
f[x]=x2+2x+4
f[x]=-1.2+2.[-1]+4
f[x]=-2+[-2]+4
f[x]=-4+4=0
đầu bài cho giá trị nhỏ nhất là 3 khi x=-1[mà 0 nhỏ hơn 3]
suy ra giả thiết của đầu bài đưa ra là đúng
NẾU CÂU TRẢ LỜI CỦA MÌNH SAI HAY ĐÚNG HAY GÓP Ý KIẾN VÀ BẤM NÚT DỤNG CHO MÌNH NHÉ
\(M=\left(x^2+0,5x\right)+\left(0,5x+0,25\right)+0,75\)
\(M=x\left(x+0,5\right)+0,5\left(x+0,5\right)+0,75\)
\(M=\left(x+0,5\right)^2+0,75>0\)
\(\Rightarrow\) Đa thức M không có nghiệm
Đpcm
bài này mình chỉ biết làm câu a thôi thông cảm:
M=x^2+x+1
x^2> hoặc =0 với mọi x
x> hoặc =0 với mọi x
1>0
Suy ra M=x^2+x+1 ko có nghiệm
b) mình chỉ biết làm GTLN thôi sorry
Bài 2 :
a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = 2
b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)
Dấu ''='' xảy ra khi x = -1
Bài 1 :
a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)
c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
a)ta có \(\Delta=b^2-4ac\)=1\(^2\)-4*1*1=-3
=>phương trình vô nghiệm vì \(\Delta< 0\)
b)ta có x\(^2\)+x+1=x\(^2\)+2.x.\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+1-\(\dfrac{1}{4}\)=\(\left(x+\dfrac{1}{2}\right)^2\)+\(\dfrac{3}{4}\)
vì \(\left(x+\dfrac{1}{2}\right)^2\)>0 \(\forall x\in R\)
\(\left(x+\dfrac{1}{2}\right)^2\)+\(\dfrac{3}{4}\)>\(\dfrac{3}{4}\)\(\forall x\in R\)
=>GTNN =3/4 khi và chỉ khi \(\left(x+\dfrac{1}{2}\right)^2=0\)<=>x=-\(\dfrac{1}{2}\)
a) \(A\left(x\right)=0\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
b) \(A\left(x\right)=0\Leftrightarrow3x-1=0\Leftrightarrow x=\frac{1}{3}\)
c) \(A=\left|x-1\right|+\left|x-2019\right|=\left|x-1\right|+\left|2019-x\right|\ge\left|x-1+2019-x\right|=2018\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-1\ge0\\2019-x\ge0\end{cases}\Rightarrow}1\le x\le2019\)
a) Thay `x=2` vào đa thức, ta có: `A(2)=2^2-2.2=0`
b) Các nghiệm của đa thức `A(x)` là:
`A(x)=0 `
`-> x^2-2x=0`
`->x(x-2)=0`
`->` \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
a) Thay x = 2 vào đa thức A(x), ta có:
A(2) = 22 - 2.2 = 0
b) Xét A(x) = 0
<=> x2 - 2x = 0
<=> x(x-2)=0
<=> \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy A(x) có nghiệm x \(\in\left\{0;2\right\}\)
Bài 2:
a: Sửa đề: \(x^2+2x+3\)
Đặt \(x^2+2x+3=0\)
\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)
Do đó: Phương trình vô nghiệm
b: Đặt \(x^2+4x+6=0\)
\(\Leftrightarrow x^2+4x+4+2=0\)
\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)
` 1x + 3x^2 =0`
` x( 3x + 1) = 0`
\(=>\left[{}\begin{matrix}x=0\\3x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Vậy.....
Ta có: \(x^2-2x+15=x^2-2x+1+14=\left(x-1\right)^2+14>0\)
=> đa thức luôn vô nghiệm
Lại có: \(\left(x-1\right)^2+14\ge14\)
=> GTNN = 14 . Dấu "=" xảy ra khi x = 1