K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

Ta có: \(x^2-2x+15=x^2-2x+1+14=\left(x-1\right)^2+14>0\)

=> đa thức luôn vô nghiệm

Lại có: \(\left(x-1\right)^2+14\ge14\)

=> GTNN = 14 . Dấu "=" xảy ra khi x = 1

11 tháng 5 2017

Thay x=-1 vào đa thứcf[x] ta có

f[x]=x2+2x+4

f[x]=-1.2+2.[-1]+4

f[x]=-2+[-2]+4

f[x]=-4+4=0 

đầu bài cho giá trị nhỏ nhất là 3 khi x=-1[mà 0 nhỏ hơn 3]

suy ra giả thiết của đầu bài đưa ra là đúng

NẾU CÂU TRẢ LỜI CỦA MÌNH SAI HAY ĐÚNG HAY GÓP Ý KIẾN VÀ BẤM NÚT DỤNG CHO MÌNH NHÉ 

24 tháng 4 2017

\(M=\left(x^2+0,5x\right)+\left(0,5x+0,25\right)+0,75\)

\(M=x\left(x+0,5\right)+0,5\left(x+0,5\right)+0,75\)

\(M=\left(x+0,5\right)^2+0,75>0\)

\(\Rightarrow\) Đa thức M không có nghiệm

Đpcm

24 tháng 4 2017

bài này mình chỉ biết làm câu a thôi thông cảm:

M=x^2+x+1

x^2> hoặc =0 với mọi x

x> hoặc =0 với mọi x

1>0

Suy ra M=x^2+x+1 ko có nghiệm

b) mình chỉ biết làm GTLN thôi sorry

12 tháng 3 2022

Bài 2 : 

a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)

Dấu ''='' xảy ra khi x = 2 

b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)

Dấu ''='' xảy ra khi x = -1 

12 tháng 3 2022

 Bài 1 : 

a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)

c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)

21 tháng 4 2021

a)ta có \(\Delta=b^2-4ac\)=1\(^2\)-4*1*1=-3

=>phương trình vô nghiệm vì \(\Delta< 0\)

b)ta có x\(^2\)+x+1=x\(^2\)+2.x.\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+1-\(\dfrac{1}{4}\)=\(\left(x+\dfrac{1}{2}\right)^2\)+\(\dfrac{3}{4}\)

vì \(\left(x+\dfrac{1}{2}\right)^2\)​>0 \(\forall x\in R\)

\(\left(x+\dfrac{1}{2}\right)^2\)+\(\dfrac{3}{4}\)>\(\dfrac{3}{4}\)\(\forall x\in R\)

=>GTNN =3/4 khi và chỉ khi \(\left(x+\dfrac{1}{2}\right)^2=0\)<=>x=-\(\dfrac{1}{2}\)

22 tháng 6 2020

a) \(A\left(x\right)=0\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

b) \(A\left(x\right)=0\Leftrightarrow3x-1=0\Leftrightarrow x=\frac{1}{3}\)

c) \(A=\left|x-1\right|+\left|x-2019\right|=\left|x-1\right|+\left|2019-x\right|\ge\left|x-1+2019-x\right|=2018\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-1\ge0\\2019-x\ge0\end{cases}\Rightarrow}1\le x\le2019\)

22 tháng 6 2021

a) Thay `x=2` vào đa thức, ta có: `A(2)=2^2-2.2=0`

b) Các nghiệm của đa thức `A(x)` là:

`A(x)=0 `

`-> x^2-2x=0`

`->x(x-2)=0`

`->` \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

22 tháng 6 2021

a) Thay x = 2 vào đa thức A(x), ta có:

A(2) = 22 - 2.2 = 0

b) Xét A(x) = 0

<=> x2 - 2x = 0

<=> x(x-2)=0

<=> \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy A(x) có nghiệm x \(\in\left\{0;2\right\}\)

Bài 2: 

a: Sửa đề: \(x^2+2x+3\)

Đặt \(x^2+2x+3=0\)

\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)

Do đó: Phương trình vô nghiệm

b: Đặt \(x^2+4x+6=0\)

\(\Leftrightarrow x^2+4x+4+2=0\)

\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)

giúp em bài 1 với 3 nữa đc không ạaaa?

29 tháng 5 2022

` 1x + 3x^2 =0`

` x( 3x + 1) = 0`

\(=>\left[{}\begin{matrix}x=0\\3x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)

Vậy.....

29 tháng 5 2022

` 1x + 3x^2 `

` 1x + 3x^2 =0`

` x.( 3x + 1) = 0`

\(=>\left[{}\begin{matrix}x=0\\3x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\3x=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)

Vậy nghiệm của đa thức là: ` 0, -1/3`