Bài 2 : So sánh
a, \(A=\frac{201-200}{201+200}\)và \(B=\frac{201^2-200^2}{201^2+200^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{200}{201}>\frac{200}{201+202}và\frac{201}{202}>\frac{201}{201+202}\)
Suy ra\(\frac{200}{201}+\frac{201}{202}>\frac{200}{201+202}+\frac{201}{201+202}=\frac{200+201}{201+202}\)
Vậy\(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
\(\frac{199}{200}>\frac{199}{200+201+202}\)
\(\frac{200}{201}>\frac{200}{200+201+202}\)
\(\frac{201}{202}>\frac{201}{200+201+202}\)
=>\(A>B\)
Do \(\frac{199}{200}\)> \(\frac{199}{200+201+202}\), \(\frac{200}{201}\)>\(\frac{200}{200+201+202}\),\(\frac{201}{202}\)>\(\frac{201}{200+201+202}\)nên A>B
\(A=\frac{199}{200}+\frac{200}{201}+\frac{201}{202}< \frac{199}{200+201+202}+\frac{200}{200+201+202}+\frac{201}{200+201+202}\)
A \(< \frac{199+200+201}{200+201+202}=B\)
\(A< B\)
Ta có: \(A=\frac{199}{200}+\frac{200}{201}+\frac{201}{202}< \frac{199}{200+201+202}+\frac{200}{200+201+202}+\frac{201}{200+201+202}< \)
\(< \frac{199+200+201}{200+201+202}\)
Vậy A < B
ỦNG HỘ TỚ NHA
200+201/201+202=200/403+201/403
vì 200/201>200/403
201/202>201/403 nên \(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
\(\frac{200+201}{201+202}=\frac{200}{201+202}+\frac{201}{201+201}\)
Mà \(201\frac{200}{201+202}\)
\(\frac{201}{202}>\frac{201}{201+202}\)
=> \(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
A = 1/401
B = 201 x 201 - 200 x 200 / 201 x 201 + 200 x 200
B = 201 x 200 + 201 - 200 x 200 / 201 x 200 + 201 + 201
B = (201 - 200) x 200 + 201 / ( 201 + 200) x 200 + 201
B = 1 x 200 + 201 / 401 x 200 + 201
B = 401 / 401 x 200 + 201
ta có 401 / 200 x 401 + 201 > 401 / 201 x 401
ta có : 401 / 201 x 401 = 1/201 > 1/401
mà : 401/401 x 200 + 201 > 401 / 201 x 401 > 1/401