K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2020

Ta có \(\left(a^{201}+b^{201}\right)^2=\left(a^{200}+b^{200}\right)\left(a^{202}+b^{202}\right)\Leftrightarrow2a^{201}b^{201}=a^{200}b^{202}+a^{202}b^{200}\Leftrightarrow2ab=a^2+b^2\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\).

Khi đó \(a^{200}=a^{201}\Leftrightarrow a=1\).

Do đó P = 2.

20 tháng 12 2018

\(a^{200}+b^{200}=a^{201}+b^{201}=a^{202}+b^{202}\)

\(\Leftrightarrow a,b\in\left\{\left(0;1\right),\left(0;0\right),\left(1;0\right),\left(1;1\right)\right\}\)

\(\Rightarrow P=a^{2006}+b^{2006}\in\left\{1;0;2\right\}\)

22 tháng 9 2019

ta có: a200 + b200 = a201 + b201 = a202 + b202

-----> a200 + b200 + a202 + b202 = 2.a201 + 2.b201

-----> a200 - 2.a201 + a202 + b200 - 2.b201 + b202 = 0

----> a200.(1-a)2 + b200. (1-b)2 = 0

mà \(a^{200}.\left(1-a\right)^2\ge0;b^{200}.\left(1-b\right)^2\ge0.\)

a và b là các số thực không âm

----> (1-a)2 = 0 ----> a = 1

(1-b)2 = 0 ----> b= 1

----> B =a2019 + b2020 = 1+1 = 2

22 tháng 9 2019

GIẢI

\(a^{200}+b^{200}=a^{201}+b^{201}\)

\(\Rightarrow a^{200}\left(a-1\right)+b^{200}\left(b-1\right)=0\left(1\right)\)

\(a^{201}+b^{201}=a^{202}+b^{202}\)

\(\Rightarrow a^{201}\left(a-1\right)+b^{201}\left(b-1\right)=0\left(2\right)\)

Ta lấy ( 2 ) - ( 1 ) suy ra :
\(\left(a-1\right)\left(a^{201}-a^{200}\right)+\left(b-1\right)\left(b^{201}-b^{200}\right)=0\)

\(\Leftrightarrow a^{200}\left(a-1\right)^2+b^{200}\left(b-1\right)^2=0\)

Ta thấy : \(a^{200}\left(a-1\right)^2\ge0;b^{200}\left(b-1\right)^2\ge0\) với mọi a , b 

Do đó để tổng của chúng bằng 0 thì :

\(a^{200}\left(a-1\right)^2=b^{200}\left(b-1\right)^2=0\)

\(\Rightarrow a=0\) hoặc \(a=1\) ; \(b=0\) hoặc \(b=1\)

Suy ra \(\left(a,b\right)=\left(1,1\right);\left(0,0\right);\left(1,0\right);\left(0,1\right)\)

\(\Rightarrow B=a^{2019}+b^{2020}\) có thể nhận những giá trị \(0;2;1\)

Chúc bạn học tốt !!!

AH
Akai Haruma
Giáo viên
1 tháng 9 2019

Lời giải:
\(a^{200}+b^{200}=a^{201}+b^{201}\)

\(\Rightarrow a^{200}(a-1)+b^{200}(b-1)=0(1)\)

\(a^{201}+b^{201}=a^{202}+b^{202}\)

\(\Rightarrow a^{201}(a-1)+b^{201}(b-1)=0(2)\)

Lấy $(2)-(1)$ suy ra:

\((a-1)(a^{201}-a^{200})+(b-1)(b^{201}-b^{200})=0\)

\(\Leftrightarrow a^{200}(a-1)^2+b^{200}(b-1)^2=0\)

Ta thấy $a^{200}(a-1)^2\geq 0; b^{200}(b-1)^2\geq 0$ với mọi $a,b$

Do đó để tổng của chúng bằng $0$ thì:

\(a^{200}(a-1)^2=b^{200}(b-1)^2=0\)

$\Rightarrow a=0$ hoặc $a=1$; $b=0$ hoặc $b=1$

Suy ra $(a,b)=(1,1); (0,0); (1,0); (0,1)$

$\Rightarrow B=a^{2019}+b^{2020}$ có thể nhận những giá trị là $0; 2; 1$

6 tháng 7 2019

a) \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)

\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

\(\Leftrightarrow x+2005=0\)

\(\Leftrightarrow x=-2005\)

b) Sửa đề :

\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\)

\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)

\(\Leftrightarrow x=300\)

c) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)

\(\Leftrightarrow\frac{2-x}{2002}+1=\frac{1-x}{2003}+1-\frac{x}{2004}+1\)

\(\Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}-\frac{2004-x}{2004}\)

\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)=0\)

\(\Leftrightarrow x=2004\)

Vậy....

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

a)

\(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)

\(\Leftrightarrow (x-23)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)

Dễ thấy: \(\frac{1}{24}>\frac{1}{26}; \frac{1}{25}>\frac{1}{27}\Rightarrow \frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}>0\)

$\Rightarrow \frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\neq 0$

Do đó $x-23=0\Rightarrow x=23$

b)

PT \(\Leftrightarrow \frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}\)

\(\Leftrightarrow (x+100)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)

Dễ thấy: $\frac{1}{98}< \frac{1}{96}; \frac{1}{97}< \frac{1}{95}$

$\Rightarrow \frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}< 0$ hay khác $0$

$\Rightarrow x+100=0\Rightarrow x=-100$

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

c)

PT \(\Leftrightarrow \frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)

\(\Leftrightarrow \frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

\(\Leftrightarrow (x+2005)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

Dễ thấy $\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}<0$ hay khác $0$

Do đó $x+2005=0\Rightarrow x=-2005$

d)

PT \(\Leftrightarrow \frac{201-x}{99}+1+\frac{203-x}{97}+1+\frac{205-x}{96}+1=0\)

\(\Leftrightarrow \frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{96}=0\)

\(\Leftrightarrow (300-x)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{96}\right)=0\)

Dễ thấy \(\frac{1}{99}+\frac{1}{97}+\frac{1}{96}>0\) hay khác $0$

Do đó $300-x=0\Rightarrow x=300$