Cho tứ giác ABCD nội tiếp đường tròn tâm ( O ) Chứng minh AB.CD+AD.BC=AC.BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: `hat(ABD) = hat(ACD)`.
Lấy `M in AC` sao cho `hat(ADB) = hat(MDC)`.
`=> triangle ABD ~ triangle MCD`.
`=> (AB)/(MC) = (BD)/(CD) => AB . CD = BD . MC`.
Xét `2 triangle ADM, BDC`, ta có:
`hat(ADM) = hat(BDC)`.
`(DA)/(DM) = (BD)/(DC) ( triangle ABD ~ triangle MCD )`.
`=> triangle ADM ~ triangle BCD => (AD)/(AM) = (BD)/(CB) => AD . BC = BD . AM`
`=> AD . BC + AD . BC = BD . AM + BD . MC`
`=> AD . BC + AD . BC = BD(AM+MC)`
`=> AD.BC+AD.BC = BD . AC => dpcm`.
Đây là đẳng thức ptôlêmê.
C/m: Lấy 1 điểm M thuộc AC sao cho gocABD=gocMBC. Do tứ giác ABCD nội tiếp nên ^ADC=^ACB. Từ 2 điều trên suy ra tam giác ABD ~ MBC(g.g). Suy ra AD/MC=BD/BC => AD.BC=BD.MC (1)
Từ cặp tam giác đồng dạng trên ta cũng có AB/BM = BD/BC => AB/BD = BM/BC mà ^ABM = ^DBC nên tam giác ABM ~ tam giác DBC.
=> AB.CD=AM.BD (2)
Cộng (1), (2) vế theo vế suy ra AC.BD = AB . CD + AD . BC
Vậy AC.BD = AB.CD + AD . BC ( đpcm )
vì tứ giác ABCD nội tiếp,theo định lý Ptoleme ta có:
AC.BD=AB.CD+AD.BC (ĐPCM)
a: Xét tứ giác MCOD có \(\widehat{MCO}+\widehat{MDO}=180^0\)
nên MCOD là tứ giác nội tiếp
b: Xét ΔMCA và ΔMBC có
\(\widehat{MCA}=\widehat{MBC}\)
\(\widehat{AMC}\) chung
Do đó; ΔMCA\(\sim\)ΔMBC
cho t/g nội tiếp ABCD
khi đó <BAC= <BDC VÀ <ADB = <ACB
DỰNG K TRÊN AC SAO CHO <ABK = <CBD
VÌ <ABK+ <CBK=<ABC= <CBD+ <ABD NÊN <CBK= <ABD
➙△ABK∼△DBC VÀ △ABD∼△KBC
➙AK/AB=CD/BD VÀ CK/BC=DA/BC
➙AK*BD=AB*CD VÀ CK*BD =BC*DA
CỘNG LẠI ĐƯỢC:AK*BD+CK*BD=AB*CD+BC*DA
NHÓM NHÂN TỬ:(AK+CK)*BD=AB*CD+BC*DA
MÀ AK+CK=AC
VẬY AC*BD=AB*CD+BC*DA(đpcm)
- Ta có ABCD là tứ giác nội tiếp đường tròn.
- Trên cung nhỏ BC, ta có các góc nội tiếp ∠BAC = ∠BDC, và trên cung AB, ∠ADB = ∠ACB.
- Lấy 1 điểm K trên AC sao cho ∠ABK = ∠CBD;
- Từ ∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD, suy ra ∠CBK = ∠ABD.
- Do vậy tam giác △ABK đồng dạng với tam giác △DBC, và tương tự có △ABD ∼ △KBC.
- Suy ra: AK/AB = CD/BD, và CK/BC = DA/BD;
- Từ đó AK·BD = AB·CD, và CK·BD = BC·DA;
- Cộng các vế của 2 đẳng thức trên: AK·BD + CK·BD = AB·CD + BC·DA;
- Hay: (AK+CK)·BD = AB·CD + BC·DA;
- Mà AK+CK = AC, nên AC·BD = AB·CD + BC·DA; (điều phải chứng minh)
Định lí Ptoleme