K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2019

Bổ sung đề : Tìm : \(GTLN\)của \(P=a+b+c\)

Ta có : \(\hept{\begin{cases}a+3c=2016\left(1\right)\\a+2b=2017\left(2\right)\end{cases}}\)

Từ (1) , \(\Rightarrow a=2016-3c\)

Lấy (2) trừ (1) ta được :

\(2b-3c=1\)\(\Leftrightarrow b=\frac{1+3c}{2}\)

Khi đó : \(P=a+b+c\)

\(=\left(2016-3c\right)+\frac{1+3c}{2}+c\)

\(=\left(2016+\frac{1}{2}\right)+\left(\frac{-6c+3c+2c}{2}\right)\)

\(=2016\frac{1}{2}-\frac{c}{2}\)

Do a,b,c không âm nên : \(P=2016\frac{1}{2}-\frac{c}{2}\le2016\frac{1}{2}\)

\(\Rightarrow Pmax=2016\frac{1}{2}\Leftrightarrow c=0\)

21 tháng 1 2019

làm lại cho dễ hiểu.

Ta có:\(\hept{\begin{cases}a+3c=2016\left(1\right)\\a+2b=2017\left(2\right)\end{cases}}\)

Từ (1) \(\Rightarrow a=2016-3c\)

Lấy (2)-(1),ta được:

\(2b-3c=1\)

\(\Rightarrow b=\frac{1+3c}{2}\)

Khi đó:\(P=a+b+c\)

\(=\left(2016-3c\right)+\frac{1+3c}{2}+c\)

\(=\left(2016+\frac{1}{2}\right)+\frac{-6c+3c+2c}{2}\)

\(=2016\frac{1}{2}-\frac{c}{2}\)

Vì a,b,c không âm nên:

 \(P=2016\frac{1}{2}-\frac{c}{2}\)

\(\le2016\frac{1}{2}\)

\(\Rightarrow P_{MAX}=2016\frac{1}{2}\)tại \(c=0\)

4 tháng 3 2018

Ta có 

(a+3c)+(a+2b)=8+9

\(\Rightarrow\)2a+2b+3c=17

\(\Rightarrow2\left(a+b+c\right)+c=17\)

+, Nếu a+b+c đạt max thì 2(a+b+c) đạt max\(\Rightarrow\)c đạt min\(\Rightarrow\)c=0

\(\Rightarrow\)GTLN a+b+c=8,5

Vậy...

+Nếu a+b+c đạt min thì 2(a+b+c) đạt min \(\Rightarrow\)c đạt max \(\Rightarrow\)c=17

\(\Rightarrow\)GTLN a+b+c =0

Vậy ....

10 tháng 12 2019

\(\hept{\begin{cases}a^2+b^4+c^6+d^8=1\\a^{2016}+b^{2017}+c^{2018}+d^{2019}=1\end{cases}}\)

=> \(0\le a^2;b^4;c^6;d^8\le1\)

=> \(-1\le a;b;c;d\le1\)

=> \(a^{2016}\le a^2\)\(b^{2017}\le b^4\)\(c^{2018}\le c^6\)\(d^8\le d^{2019}\)

=> \(a^{2016}+b^{2017}+c^{2018}+d^{2019}\le a^2+b^4+c^6+d^8\)

Do đó: \(a^{2016}+b^{2017}+c^{2018}+d^{2019}=a^2+b^4+c^6+d^8=1\)

<=> \(a^{2016}=a^2;b^{2017}=b^4;c^{2018}=c^6;d^{2019}=d^8;a^2+b^4+c^6+d^8=1\)

<=> \(\orbr{\begin{cases}a=0\\a=\pm1\end{cases}}\); ​\(\orbr{\begin{cases}b=0\\b=1\end{cases}}\)\(\orbr{\begin{cases}c=0\\c=\pm1\end{cases}}\)\(\orbr{\begin{cases}d=0\\d=1\end{cases}}\)\(a^2+b^4+c^6+d^8=1\)

<=>  \(a=b=c=0;d=1\)hoặc \(a=b=d;c=\pm1\) hoặc \(a=c=d=0;b=1\)hoặc \(b=c=d=0;a=\pm1\).

10 tháng 12 2019

Tại sao \(0\le a^2;b^4;c^6;d^8\le1\) Lại suy ra \(-1\le a;b;c;d\le1\)????????????????????????

15 tháng 3 2020

\(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\)\(\Rightarrow a+3b-5c=-2\)

\(\Rightarrow3b=-2+5c-a\)\(\Rightarrow3b+2a-4c=-2+5c-a+2a-4c\)

\(\Rightarrow P=-2+a+c\)

Lại có : \(2a+b+2c=6\Rightarrow2\left(a+c\right)\le6\)

\(\Rightarrow a+c\le3\)

\(\Rightarrow P\le-2+3=1\Rightarrow P\le1\)

Dấu " = " sảy ra \(\Leftrightarrow\hept{\begin{cases}b=0\\3a-3c=4\\2a+2c=6\end{cases}}\)\(\Rightarrow\hept{\begin{cases}b=0\\3a-3c=4\\3a+3c=9\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=\frac{13}{6}\\b=0\\c=\frac{5}{6}\end{cases}}\)

Chị chỉ tìm được Max thui 

19 tháng 3 2020

\(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\)

<=> \(\hept{\begin{cases}b+2c=6-2a\\4b-3c=4-3a\end{cases}}\)

<=> \(\hept{\begin{cases}c=\frac{20}{11}-\frac{5a}{11}\\b=\frac{26}{11}-\frac{12}{11}a\end{cases}}\)

P = \(2a+3\left(\frac{26}{11}-\frac{12}{11}a\right)-4\left(\frac{20}{11}-\frac{5a}{11}\right)\)

\(=-\frac{2}{11}+\frac{6}{11}a\ge-\frac{2}{11}\)

Dấu "=" xảy ra <=> a = 0 => c =20/11 và b = 26/11

Vậy min P = -2/11 tại a = 0; b = 26/11 và c= 20/11

11 tháng 12 2019

Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath

Thay các giá trị a, b, c, d vào M nhận đc giá trị M = 0

17 tháng 3 2020

ta có : \(a^3+2b^2-4b+3=0\)

\(\Leftrightarrow a^3=-2\left(b-1\right)^2-1\le-1\Rightarrow a^3\le-1\Rightarrow a^2\ge1\) 

\(\Rightarrow\hept{\begin{cases}a^2\ge1\\a^2b^2\ge b^2\end{cases}}\)\(\Rightarrow a^2+a^2b^2-2b\ge1+b^2-2b\Rightarrow\left(b-1\right)^2\le0\)

mà \(\left(b-1\right)^2\)luôn \(\ge0\forall b\in Q\)

dấu ''='' xảy ra <=> \(b-1=0\Rightarrow b=1\)

sau đó em chỉ cần thay b=1 vào pt ban đầu :

rồi => a = ... sau đó lấy a2+b2=...