K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

\(A=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(A=b\left(x^2+xy+y^2\right)\)

Mặt khác : \(x+y=a\)

\(\Leftrightarrow a^2=\left(x+y\right)^2=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+xy+y^2=a^2-xy\)

\(A=b\left(a^2-xy\right)\)

\(A=a^2b-bxy\)

3 tháng 1 2019

ta có: \(x+y=a;x-y=b\Rightarrow y=\frac{a-b}{2};x=\frac{a+b}{2}.\)

=> \(y.x=\frac{a-b}{2}\cdot\frac{a+b}{2}=\frac{a^2-b^2}{4}\)

\(\Rightarrow x^3-y^3=\left(\frac{a+b}{2}\right)^3-\left(\frac{a-b}{2}\right)^3\)

\(=\frac{\left(a+b\right)^3-\left(a-b\right)^3}{8}=...\)

29 tháng 8 2023

 a) Ta thấy \(xy=\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}=\dfrac{3^2-5}{2}=2\)

\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\) \(=3\left(5-2\right)=9\)

 b) Ta thấy \(xy=\dfrac{-\left(x-y\right)^2+\left(x^2+y^2\right)}{2}=\dfrac{15-5^2}{2}=-5\)

\(\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\) \(=5\left(15-5\right)=50\)

15 tháng 10 2023

a) \(A=x^3+y^3+3xy\)

\(=x^3+y^3+3xy\left(x+y\right)\) (do \(x+y=1\))

\(=x^3+3x^2y+3xy^2+y^3\)

\(=\left(x+y\right)^3\) \(=1\)

b) \(B=x^3-y^3-3xy\)

\(=x^3-y^3-3xy\left(x-y\right)\) (do \(x-y=1\))

\(=x^3-3x^2y+3xy^2-y^3\)

\(=\left(x-y\right)^3\) \(=1\)

 

3 tháng 8 2023

\(\text{a) x^2 + y^2 = (x+y)^2 - 2xy = a^2 - 2b}\)

\(\text{b) x^3 + y^3 = (x+y)^3 - 3xy(x+y) = a^3 - 3ab}\)

\(\text{c) x^4 + y^4 = (x^2+y^2)^2 - 2x^2y^2 = (a^2-2b)^2 - 2b^2 = a^4 - 4a^2b + 2b^2}\)

\(\text{d) x^5 + y^5 = (x^3+y^3)(x^2+y^2) - x^2y^2(x+y) = a^5 - 5a^3b + 5ab^2}\)

 

23 tháng 9 2021

\(a,x+y=1\Leftrightarrow\left(x+y\right)^3=1\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\\ \Leftrightarrow x^3+y^3+3xy\cdot1=1\Leftrightarrow x^3+y^3+3xy=1\)

\(b,x^3-y^3-3xy\\ =x^3-3x^2y+3xy^2-y^3-3xy+3x^2y-3xy^2\\ =\left(x-y\right)^3-3xy\left(x-y-1\right)\\ =1^3-3xy\left(1-1\right)=1-0=1\)

\(c,x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\\ =\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\\ =x^2-xy+y^2+3xy-6x^2y^2+6x^2y^2\\ =x^2+2xy+y^2=\left(x+y\right)^2=1\)

5 tháng 5 2017

a) A = -1;                        b) B = ( x   +   y ) 3  =1.

19 tháng 7 2023

\(x+y=a\left(1\right)\)

\(x-y=b\left(2\right)\)

\(\left(1\right)+\left(2\right)\Rightarrow2x=a+b\Rightarrow x=\dfrac{a+b}{2}\)

\(\left(1\right)\Rightarrow y=a-x\Rightarrow y=a-\dfrac{a+b}{2}\Rightarrow y=\dfrac{a-b}{2}\)

\(xy=\dfrac{\left(a+b\right)}{2}.\dfrac{\left(a-b\right)}{2}=\dfrac{a^2-b^2}{4}\)

\(x^3-y^3=\left(\dfrac{a+b}{2}\right)^3-\left(\dfrac{a-b}{2}\right)^3=\dfrac{\left(a+b\right)^3}{8}-\dfrac{\left(a-b\right)^3}{8}\)

\(=\dfrac{\left(a+b\right)^3-\left(a-b\right)^3}{8}\)

\(=\dfrac{\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]}{8}\)

\(=\dfrac{2b\left[a^2+b^2+2ab+a^2-b^2+a^2+b^2-2ab\right]}{8}\)

\(=\dfrac{b\left[3a^2+b^2+2ab\right]}{4}\)

19 tháng 7 2023

\(\left\{{}\begin{matrix}x+y=a\\x-y=b\end{matrix}\right.\) tính \(x^3\) - y3 theo \(a\) và \(b\)

⇒ \(\left\{{}\begin{matrix}x+y+x-y=a+b\\x-y=b\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}2x=a+b\\y=x-b\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}x=\left(a+b\right):2\\y=\left(a-b\right):2\end{matrix}\right.\) ⇒ \(xy\) = \(\dfrac{a+b}{2}\)\(\times\)\(\dfrac{a-b}{2}\) = \(\dfrac{a^2-b^2}{4}\)

\(x^{3^{ }}\) - y3 = (\(x\) - y)(\(x^2\) + \(x\)y + y2) = \(\left(x-y\right)\)\(\left(\left[x+y\right]^2-xy\right)\) (1)

Thay \(x-y\) = a; \(x\) + y = b và \(xy\) = \(\dfrac{a^2-b^2}{4}\) vào (1) ta có:

\(x^3\) - y3 = b.(a2 - \(\dfrac{a^2-b^2}{4}\)) = b.\(\dfrac{3a^2+b^2}{4}\) = \(\dfrac{3a^2b+b^3}{4}\)

 

 

 

  

 

a: (x+y+z)^3-x^3-y^3-z^3

=(x+y+z-x)(x^2+2xy+y^2-x^2-xy-xz+z^2)-(y+z)(y^2-yz+z^2)

=(x+y)(y+z)(x+z)

b: x^3+y^3+z^3=1

x+y+z=1

=>x+y=1-z

x^3+y^3+z^3=1

=>(x+y)^3+z^3-3xy(x+y)=1

=>(1-z)^3+z^3-3xy(1-z)=1

=>1-3z-3z^2-z^3+z^3-3xy(1-z)=1

=>1-3z+3z^2-3xy(1-z)=1

=>-3z+3z^2-3xy(1-z)=0

=>-3z(1-z)-3xy(1-z)=0

=>(z-1)(z+xy)=0

=>z=1 và xy=0

=>z=1 và x=0; y=0

A=1+0+0=1

\(B=x^3-y^3+\left(x+y\right)^2\)

\(=\left(x-y\right)^3+3xy\left(x-y\right)+\left(x-y\right)^2+4xy\)

\(=4^3+3\cdot4\cdot5+4^2+4\cdot5\)

\(=160\)

NV
18 tháng 8 2021

\(\left(x+y\right)^2=\left(x-y\right)^2+4xy=4^2+4.5=36\)

\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=4^3+3.5.4=124\)

\(\Rightarrow B=124+36=160\)

 

15 tháng 10 2023

\(a,A=x^2+y^2\\=x^2-2xy+y^2+2xy\\=(x-y)^2+2xy\\=2^2+2\cdot1\\=4+2\\=6\)

\(b,x+y=1\\\Leftrightarrow (x+y)^3=1^3\\\Leftrightarrow x^3+3x^2y+3xy^2+y^3=1\\\Leftrightarrow x^3+3xy(x+y)+y^3=1\\\Leftrightarrow x^3+3xy\cdot1+y^3=1\\\Rightarrow A=1\)

15 tháng 10 2023

a) Ta có:

\(x-y=2\)

\(\Rightarrow\left(x-y\right)^2=2^2\)

\(\Rightarrow x^2-2xy+y^2=4\)

Mà: \(xy=1\)

\(\Rightarrow\left(x^2+y^2\right)-2\cdot1=4\)

\(\Rightarrow x^2+y^2=4+2\)

\(\Rightarrow x^2+y^2=6\)

b) Ta có: 

\(x+y=1\)

\(\Rightarrow\left(x+y\right)^3=1^3\)

\(\Rightarrow x^3+3x^2y+3xy+y^3=1\)

\(\Rightarrow x^3+3xy\left(x+y\right)+y^3=1\) 

Mà: x + y = 1

\(\Rightarrow x^3+3xy\cdot1+y^3=1\)

\(\Rightarrow x^3+3xy+y^3=1\)