\(\frac{x-7}{2005}\)+\(\frac{x-6}{2006}\)=\(\frac{x-5}{2007}\)+\(\frac{x-4}{2008}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-7}{2005}+\frac{x-6}{2006}=\frac{x-5}{2007}+\frac{x-4}{2008}\)
\(\Rightarrow\frac{x-7}{2005}-1+\frac{x-6}{2006}-1=\frac{x-5}{2007}-1+\frac{x-4}{2008}-1\)
\(\Rightarrow\frac{x-2012}{2005}+\frac{x-2012}{2006}=\frac{x-2012}{2007}+\frac{x-2012}{2008}\)
\(\Rightarrow\frac{x-2012}{2005}+\frac{x-2012}{2006}-\frac{x-2012}{2007}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2005}+\frac{1}{2006}-\frac{1}{2007}-\frac{1}{2008}\right)=0\)
\(\Rightarrow x-2012=0\). Do \(\frac{1}{2005}+\frac{1}{2006}-\frac{1}{2007}-\frac{1}{2008}\ne0\)
\(\Rightarrow x=2012\)
\(\frac{x-7}{2005}+\frac{x-6}{2006}=\frac{x-5}{2007}+\frac{x-4}{2008}\)
\(\Rightarrow\left(\frac{x-7}{2005}-1\right)+\left(\frac{x-6}{2006}-1\right)=\left(\frac{x-5}{2007}-1\right)+\left(\frac{x-4}{2008}-1\right)\)
\(\Rightarrow\frac{x-2012}{2005}+\frac{x-2012}{2006}=\frac{x-2012}{2007}+\frac{x-2012}{2008}\)
\(\Rightarrow\frac{x-2012}{2005}+\frac{x-2012}{2006}-\frac{x-2012}{2007}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2005}+\frac{1}{2006}-\frac{1}{2007}-\frac{1}{2008}\right)=0\)
Mà \(\left(\frac{1}{2005}+\frac{1}{2006}-\frac{1}{2007}-\frac{1}{2008}\right)\ne0\)
\(\Rightarrow x-2012=0\)
\(\Rightarrow x=2012\)
Vậy \(x=2012\)
\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+3=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}+3\)
\(\Leftrightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)\)
\(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)(1)
Vì \(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\ne0\)(2)
Từ (1) và (2) \(\Rightarrow x+2009=0\)\(\Rightarrow x=-2009\)
Vậy \(x=-2009\)
Ta có : \(\frac{x^2-2008}{2007}+\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\frac{x^2-2005}{2004}+\frac{x^2-2004}{2003}+\frac{x^2-2003}{2002}\)
=> \(\frac{x^2-2008}{2007}+1+\frac{x^2-2007}{2006}+1+\frac{x^2-2006}{2005}+1=\frac{x^2-2005}{2004}+1+\frac{x^2-2004}{2003}+1+\frac{x^2-2003}{2002}+1\)
=> \(\frac{x^2-2008}{2007}+\frac{2007}{2007}+\frac{x^2-2007}{2006}+\frac{2006}{2006}+\frac{x^2-2006}{2005}+\frac{2005}{2005}=\frac{x^2-2005}{2004}+\frac{2004}{2004}+\frac{x^2-2004}{2003}+\frac{2003}{2003}+\frac{x^2-2003}{2002}+\frac{2002}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}=\frac{x^2-1}{2004}+\frac{x^2-1}{2003}+\frac{x^2-1}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}-\frac{x^2-1}{2004}-\frac{x^2-1}{2003}-\frac{x^2-1}{2002}=0\)
=> \(\left(x^2-1\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)
=> \(x^2-1=0\)
=> \(x^2=1\)
=> \(x=\pm1\)
Vậy phương trình có 2 nghiệm là x = 1, x = -1 .
câu 2 :
\(\Leftrightarrow\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}-\frac{x+4}{2005}-\frac{x+5}{2004}-\frac{x+6}{2003}\)=0
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x-2009}{2003}\)=0
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\)
\(\Rightarrow x+2009=0\)
\(\Rightarrow x=-2009\)
c) Ta có : \(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\)\(\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
Mà : \(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\ne0\)
Nên x + 2009 = 0 => x = -2009
\(b,\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Rightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Rightarrow\left(x+9\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=\left(x+9\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)\)
\(\Rightarrow\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}=\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\left(KTM\right)\)
\(\text{Giải}\)
\(b,\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2009=0\Leftrightarrow x=-2009\)
theo đề baiif nên
x+1/2008+x+2/2007+x+3/2006-(x+4/2005)-(x+5/2004)-(x+6/2003)=0
suy ra [(x+1/2008)+1]+[(x+2/2007)+1]+[x+3/2006)+1]-[(x+4/2005)+1]-[(x+5/2004)+1]-[(x+6/2003)+1]=0
suy ra (x+2009/2008)+(x+2009/2007)+(x+2009/2006)-(x+2009/2005)-(x+2009/2004)-(x+2009/2003)=0
nên (x+2009)(1/2008+1/2007+1/2006-1/2005-1/2004-1/2003)=0
V1 V2
Dễ thấy V2>0 NÊN x+2009=0 suy ra x=-2009
\(\left(\frac{x-7}{2005}-1\right)+\left(\frac{x-6}{2006}-1\right)=\left(\frac{x-5}{2007}-1\right)+\left(\frac{x-4}{2008}-1\right)\)
\(\Leftrightarrow\frac{x-2012}{2005}+\frac{x-2012}{2006}=\frac{x-2012}{2007}+\frac{x-2012}{2008}\)
\(\Leftrightarrow\frac{x-2012}{2005}+\frac{x-2012}{2006}-\frac{x-2012}{2007}-\frac{x-2012}{2008}=0\)
\(\left(x-2012\right).\left(\frac{1}{2005}+\frac{1}{2006}-\frac{1}{2007}-\frac{1}{2008}\right)=0\)
\(\text{vì }\left(\frac{1}{2005}+\frac{1}{2006}-\frac{1}{2007}-\frac{1}{2008}\right)\ne0\Rightarrow x-2012=0\Rightarrow x-2012\)