Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{x-7}{2005}-1\right)+\left(\frac{x-6}{2006}-1\right)=\left(\frac{x-5}{2007}-1\right)+\left(\frac{x-4}{2008}-1\right)\)
\(\Leftrightarrow\frac{x-2012}{2005}+\frac{x-2012}{2006}=\frac{x-2012}{2007}+\frac{x-2012}{2008}\)
\(\Leftrightarrow\frac{x-2012}{2005}+\frac{x-2012}{2006}-\frac{x-2012}{2007}-\frac{x-2012}{2008}=0\)
\(\left(x-2012\right).\left(\frac{1}{2005}+\frac{1}{2006}-\frac{1}{2007}-\frac{1}{2008}\right)=0\)
\(\text{vì }\left(\frac{1}{2005}+\frac{1}{2006}-\frac{1}{2007}-\frac{1}{2008}\right)\ne0\Rightarrow x-2012=0\Rightarrow x-2012\)
1) \(\frac{x+4}{2005}\)\(+\)\(\frac{x+3}{2006}\)= \(\frac{x+2}{2007}\)\(+\)\(\frac{x+1}{2008}\)
\(\Leftrightarrow\) \(\frac{x+4}{2005}\)\(+\)1 \(+\)\(\frac{x+3}{2006}\)\(+\)1 = \(\frac{x+2}{2007}\)\(+\)1 \(+\)\(\frac{x+1}{2008}\)\(+\)1
\(\Leftrightarrow\)\(\frac{x+2009}{2005}\)+ \(\frac{x +2009}{2006}\)= \(\frac{x+2009}{2007}\)+\(\frac{x+2009}{2008}\)
\(\Leftrightarrow\)(x + 2009)(1/2005 + 1/2006) = (x + 2009)(1/2007 + 1/2008)
\(\Leftrightarrow\)(x + 2009)(1/2005 + 1/2006 - 1/2007 - 1/2008) = 0
Ta thấy: 1/2005 + 1/2006 - 1/2007 - 1/2008 \(\ne\)0
\(\Leftrightarrow\)x + 2009 = 0
\(\Leftrightarrow\)x = -2009
a) \(\Leftrightarrow\frac{x+7}{2003}+1+\frac{x+4}{2006}+1-\frac{x-1}{2011}-1-\frac{x-5}{2015}-1=0\)
\(\Leftrightarrow\frac{x+2010}{2003}+\frac{x+2010}{2006}-\frac{x+2010}{2011}-\frac{x+2010}{2015}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2003}+\frac{1}{2006}-\frac{1}{2011}-\frac{1}{2015}\right)=0\)
\(\Leftrightarrow x+2010=0\) ( vì 1/2003 + 1/2006 -- 1/2011 -- 1/2015 \(\ne\)0)
\(\Leftrightarrow x=-2010\)
câu b làm tương tự (có gì không hiểu hỏi mk nha) >v<
\(\Rightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)=\left(\frac{x+3}{2007}+1\right)+\left(\frac{x+4}{2006}+1\right)\)
\(\Rightarrow\left(\frac{x+1}{2009}+\frac{2009}{2009}\right)+\left(\frac{x+2}{2008}+\frac{2008}{2008}\right)=\left(\frac{x+3}{2007}+\frac{2007}{2007}\right)+\left(\frac{x+4}{2006}\frac{2006}{2006}\right)\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}=\frac{x+2010}{2007}+\frac{x+2010}{2006}\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}-\frac{x+2010}{2007}-\frac{x+2010}{2006}=0\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\)
=>x+2010=0
=>x=-2010
Vậy x = -2010
Trừ 1 đi ở mỗi phân số, ta có:
\(\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)
\(\Rightarrow\frac{x-1}{2009}-\frac{2009}{2009}+\frac{x-2}{2008}-\frac{2008}{2008}=\frac{x-3}{2007}-\frac{2007}{2007}+\frac{x-4}{2006}-\frac{2006}{2006}\)
\(\Rightarrow\frac{x-1-2009}{2009}+\frac{x-2-2008}{2008}=\frac{x-3-2007}{2007}+\frac{x-4-2006}{2006}\)
\(\Rightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)
\(\Rightarrow\left[x-2010\right]\left[\frac{1}{2009}+\frac{1}{2008}\right]=\left[x-2010\right]\left[\frac{1}{2007}+\frac{1}{2006}\right]\)
Sẽ có hai trường hợp
TH1: Cả hai vế đều bằng 0
Ta có: \(\hept{\begin{cases}\frac{1}{2009}+\frac{1}{2008}\ne0\\\frac{1}{2007}+\frac{1}{2006}\ne0\end{cases}}\Rightarrow x-2010=0\Rightarrow x=2010\)
TH2: Cả hai vế khác 0
Ta bỏ đi x - 2010 vì cả hai bên đều có
\(\Rightarrow\frac{1}{2009}+\frac{1}{2008}=\frac{1}{2007}+\frac{1}{2006}\)Vô lí
Vậy x = 2010
Ta có:
x-1/2009 + x-2/2008 = x-3/2007 + x-4/2006
=> (x-1/2009 - 1)+(x-2/2008 - 1) = (x-3/2007 - 1) + (x-4/2006 -1 )
=> x-2010/2009 + x-2010/2008 = x-2010/2007 + x-2010/2006
=> x-2010/2009 + x-2010/2008 - (x-2010/2007 + x-2010/2006)=0
=> (x-2010)(1/2009+1/2008-1/2007-1/2006)=0
Vì (1/2009+1/2008-1/2007-1/2006) KHÁC 0
=>x-2010=0
=>x=2010
X-1/2009 + X-2/2008 = X-3/2007 + X-4/2006
thôi nói cho nhanh nhé
bạn trừ 1 vào tất cả các giá trị VD: (X-1/2009)-1. Ta được tử chung là X-2010 cứ thế mà đặt ra làm thôi. Ko dc thì bảo tớ chỉ tiếp.
\(\Rightarrow\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}+\frac{x-4}{2006}\)
\(\Rightarrow\frac{x-1-2009}{2009}+\frac{x-2-2008}{2008}=\frac{x-3-2007}{2007}+\frac{x-4-2006}{2006}\)
\(\frac{x-1-2009}{2009}+\frac{x-2-2008}{2008}-\frac{x-3-2007}{2007}-\frac{x-4-2006}{2006}=0\)
\(\Rightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
=>(x-2010)(1/2009+1/2008-1/2007-1/2006)=0
mà 1/2009+1/2008-1/2007-1/2006 khác 0
=>x-2010=0=>x=2010
cho mìh đi rồi gửi lại đề bài qua tin nhắn cho mìh, mìh sẽ giải cho bn
\(\frac{x-7}{2005}+\frac{x-6}{2006}=\frac{x-5}{2007}+\frac{x-4}{2008}\)
\(\Rightarrow\frac{x-7}{2005}-1+\frac{x-6}{2006}-1=\frac{x-5}{2007}-1+\frac{x-4}{2008}-1\)
\(\Rightarrow\frac{x-2012}{2005}+\frac{x-2012}{2006}=\frac{x-2012}{2007}+\frac{x-2012}{2008}\)
\(\Rightarrow\frac{x-2012}{2005}+\frac{x-2012}{2006}-\frac{x-2012}{2007}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2005}+\frac{1}{2006}-\frac{1}{2007}-\frac{1}{2008}\right)=0\)
\(\Rightarrow x-2012=0\). Do \(\frac{1}{2005}+\frac{1}{2006}-\frac{1}{2007}-\frac{1}{2008}\ne0\)
\(\Rightarrow x=2012\)
\(\frac{x-7}{2005}+\frac{x-6}{2006}=\frac{x-5}{2007}+\frac{x-4}{2008}\)
\(\Rightarrow\left(\frac{x-7}{2005}-1\right)+\left(\frac{x-6}{2006}-1\right)=\left(\frac{x-5}{2007}-1\right)+\left(\frac{x-4}{2008}-1\right)\)
\(\Rightarrow\frac{x-2012}{2005}+\frac{x-2012}{2006}=\frac{x-2012}{2007}+\frac{x-2012}{2008}\)
\(\Rightarrow\frac{x-2012}{2005}+\frac{x-2012}{2006}-\frac{x-2012}{2007}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2005}+\frac{1}{2006}-\frac{1}{2007}-\frac{1}{2008}\right)=0\)
Mà \(\left(\frac{1}{2005}+\frac{1}{2006}-\frac{1}{2007}-\frac{1}{2008}\right)\ne0\)
\(\Rightarrow x-2012=0\)
\(\Rightarrow x=2012\)
Vậy \(x=2012\)