Tìm GTLN của bt: M = xyz(x+y)(y+z)(z+x) với x,y,z >0 và x+y+z = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cô si cho 3 số không âm ta được:
1 = x + y + z \(\ge3.\sqrt[3]{xyz}\) (*)
Do đó, 2 = (x + y) + (y + z) + (z + x) \(\ge3.\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (**)
Dễ thấy 2 vế của (*) và (**) đều không âm nên nhân từng vế của chúng ta được: 2 \(\ge9.\sqrt[3]{A}\)
\(\Rightarrow A\le\left(\frac{2}{9}\right)^3\)
Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)
Vậy ...
https://diendantoanhoc.net/topic/167848-x2y2z2xyz4-max-xyz/
Ta có: x+y+z=0
\(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)
M=(x+y)(y+z)(x+z)=(-z).(-x).-(y)=-x.y.z=-2
ta có x+y+z=0
\(\Rightarrow x+y=-z\\ y+z=-x\\ x+z=-y\)
M=(x+y).(y+z).(x+z)=(-z).(-x).(-y)=-(x+y+z)
mà x+y+z=2 \(\Rightarrow-\left(x+y+z\right)=-2\)
Sửa đề: \(A=xyz\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Áp dụng BĐT AM-GM ta có:
\(xyz\le\left(\dfrac{x+y+z}{3}\right)^3=\dfrac{\left(x+y+z\right)^3}{27}=\dfrac{1}{27}\)
Và \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\left(\dfrac{x+y+y+z+z+x}{3}\right)^3\)
\(=\left(\dfrac{2\left(x+y+z\right)}{3}\right)^3=\left(\dfrac{2}{3}\right)^3=\dfrac{8}{27}\)
Nhân theo vế 2 BĐT trên ta có:
\(A\le\dfrac{1}{27}\cdot\dfrac{8}{27}=\dfrac{8}{729}\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)