so sánh 30 mũ 11 và 18 mũ 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^{39}\) và \(11^{21}\)
\(\Rightarrow3^{39}=3^{13.3}=1594323^3\)
\(\Rightarrow11^{21}=11^{7.3}=194487171^3\)
Nên \(3^{39}< 11^{21}\)
b) \(199^{20}\) và \(2003^{15}\)
\(\Rightarrow199^{20}=199^{4.5}=1568239201^5\)
\(\Rightarrow2003^{15}=8036054027^5\)
Nên \(199^{20}< 2003^{15}\)
32 mũ 18 = 64 mũ 9
Vì 15 > 9 nên 63 mũ 15 > 64 mũ 9
thế thôi!
63 ^15 = 63^ 5.3 = ( 63^ 5 ) 3 = 992 436 543^ 3
34 ^18 = 34^ 6.3 = ( 34^ 6 ) 3 = 1 544 804 416 ^3
Vì : 992 436 543^ 3 < 1 544 804 416^ 3
Nên : 63 ^15 < 34^ 18
a) ta có: 7^10 < 7^14 = (7^2)^7 = 49^7 < 50^7
=> 7^10 < 50^7
b) ta có: 5^30 = (5^3)^10 = 125^10 > 124^10
=> 5^30 > 124^10
c) ta có: 9^21 = (9^3)^7=729^7
phần d thì mk ko bk, xl bn nha
a,
15^12=(3*5)^12=3^12*5^12
81^3*125^5=(3^4)^3*(5^3)^5=3^12*5^15
Vì 12<15 suy ra 5^12<5^15
Suy ra 3^12*5^12<3^12*5^15
\(a.81^3.125^5=\left(3^4\right)^3.\left(5^3\right)^5=3^{12}.5^{15}=3^{12}.5^{12}.5^3=\left(3.5\right)^{12}.5^3=15^{12}.5^3>15^{12}\)
\(b.4^{20}.81^{12}=\left(2^2\right)^{20}.\left(9^2\right)^{12}=2^{40}.9^{24}=2^{20}.2^{20}.9^{20}.9^4=\left(2.9\right)^{20}.2^{20}.9^4=18^{20}.2^{20}.9^4>18^{20}\)
\(c.73^{75}=\left(73^3\right)^{25}=389017^{25}\)
\(107^{50}=107^{2.50}=\left(107^2\right)^{25}=11449^{25}\)
Vì \(389017^{25}>11449^{25}\Rightarrow73^{75}>107^{50}\)
Để tớ ghi đề giùm cho các bạn hiểu :
\(11^{21}+1\div11=121\)
\(4^{2x}+1=64\)
So sánh
\(10^{30}...2^{100}\)
\(2^{98}...9^{42}\)
bài 1
42x+1 = 64
=> 42x+1 = 43
=> 2x + 1 = 3
=> 2x = 2
=> x = 1
bài 2
1030 = ( 103 )10 = 100010
2100 = ( 210 )10 = 102410
=> 100010 < 102410
=> 1030 < 2100
298 = ( 27 )14 = 12814
942 = ( 93 )14 = 72914
=> 12814 < 72914
=> 298 < 942
Có : 30^11 < 32^11 = (2^5)11 = 2^55 (1)
Có : 18^15 > 16^15 = (2^4)15 = 2^60 (2)
Từ (1) và (2) suy ra 30^11 < 18^15.