tìm ;y biết:\(\left|3x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0\)
AI NHANH NHẤT MÌNH SẼ TICK CHO
CÓ CẢ LỜI GẢI NHA
NHANH LÊN TỐI NAY MÌNH PHẢI NỘP RỒI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ư(5)={1; -1; 5; -5};
Ư(-30)={\(\pm1;\pm2;\pm3;\pm5;\pm6;\pm10;\pm15;\pm30\)}
Ư(19)={\(\pm1;\pm19\)}
Ư(22)=\(\left\{\pm1;\pm2;\pm11;\pm22\right\}\)
2b)BCNN(-8; -4)={8}
a)B(-8)={\(\pm8;\pm16;\pm24;\pm32;\pm40;...\)}
B(-4)\(\left\{\pm4;\pm8;\pm12;\pm16;\pm20;...\right\}\)
Cho D=3n+5/3n+2
Tìm n để D là phân số
Tìm n để D là số nguyên
Tìm n để D max
TÌm n để D min
- Xinh xắn, dễ thương,...
-hài hòa, chất phác, thật thà,...
- chăm chỉ, ngoan ngoãn, siêng năng,...
a) \(đk:\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
b) \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
\(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{2}+1\right)-1}{\sqrt{2}+1-2}=\dfrac{2\sqrt{2}+1}{\sqrt{2}-1}\)
c) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{1}{2}\)
\(\Leftrightarrow4\sqrt{x}-2=\sqrt{x}-2\Leftrightarrow3\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)
d) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}>2\)
\(\Leftrightarrow2\sqrt{x}-1>2\sqrt{x}-4\Leftrightarrow-1>-4\left(đúng\forall x\right)\)
e) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}+\dfrac{3}{\sqrt{x}-2}=2+\dfrac{3}{\sqrt{x}-2}\in Z\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(x\ge0\)
\(\Rightarrow x\in\left\{1;9;25\right\}\)
Ta có:
24=2^3x3
36=2^2x3^2
60=2^2x3x5
BCNN(24,36,60)=2^3x3^2x5=360
BC(24,36,60)={0;360;720;1080;...}
a, Gọi \(I\left(x;y\right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC\)
\(\Rightarrow\left\{{}\begin{matrix}IA=IB\\IA=IC\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}IA^2=IB^2\\IA^2=IC^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(-3-x\right)^2+\left(6-y\right)^2=\left(1-x\right)^2+\left(-2-y\right)^2\\\left(-3-x\right)^2+\left(6-y\right)^2=\left(6-x\right)^2+\left(3-y\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=-5\\3x-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
Vì \(|3x^2-27|\ge0\)\(\forall x\)\(\Rightarrow|3x^2-27|^{2019}\ge0\)\(\forall x\)
\(\left(5y+12\right)^{2018}\ge0\)\(\forall y\)
\(\Rightarrow|3x^2-27|^{2019}+\left(5y+12\right)^{2018}\ge0\)\(\forall x,y\)
mà \(|3x^2-27|^{2019}+\left(5y+12\right)^{2018}=0\)
\(\Rightarrow\)Dấu = chỉ xảy ra khi \(|3x^2-27|^{2019}=0\)và \(\left(5y+12\right)^{2018}=0\)
\(\Rightarrow|3x^2-27|=0\)và \(5y+12=0\)
\(\Rightarrow3x^2-27=0\)và \(5y=-12\)
\(\Rightarrow3x^2=27\)và \(y=\frac{-12}{5}\)
\(\Rightarrow x^2=9\)và \(y=\frac{-12}{5}\)
\(\Rightarrow x=3\)hoặc \(x=-3\)và \(y=\frac{-12}{5}\)