K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{2c^2}{32}=\dfrac{a^2-b^2+2c^2}{4-9+32}=\dfrac{108}{27}=4\)

=> a2 = 16

=> a = 4 hoặc a = -4

Thay vào \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) tìm nốt a, b, c

hjhj, thật ra bài này mik làm đc. mik gửi cho vui thôi

dù gì thì

Tính chất của dãy tỉ số bằng nhau

29 tháng 12 2020

a) \(\dfrac{a}{5}=\dfrac{b}{4}\Rightarrow\dfrac{a^2}{25}=\dfrac{b^2}{16}\)

Áp dụng tính chất DTSBN :

\(\dfrac{a^2}{25}=\dfrac{b^2}{16}=\dfrac{a^2-b^2}{25-16}=\dfrac{1}{9}\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{1}{9}\cdot25=\dfrac{25}{9}\\b^2=\dfrac{1}{9}\cdot16=\dfrac{16}{9}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3};b=\dfrac{4}{3}\\a=\dfrac{-5}{3};b=-\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(\left(a;b\right)\in\left\{\left(\dfrac{5}{3};\dfrac{4}{3}\right);\left(-\dfrac{5}{3};-\dfrac{4}{3}\right)\right\}\)

b) \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)

Áp dụng tính chất DTSBN :

\(\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{2c^2}{32}=\dfrac{a^2-b^2+2c^2}{4-9+32}=\dfrac{108}{27}=4\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=4.4=16\\b^2=4.9=36\\c^2=4,16=64\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=4;=6;c=8\\a=-4;b=-6;c=-8\end{matrix}\right.\)

Vậy (a;b;c) \(\in\left\{\left(4;6;8\right);\left(-4;-6;-8\right)\right\}\)

 

2 tháng 11 2021

Sửa \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\Rightarrow a=2k;b=3k;c=4k\)

\(a^2-b^2+2c^2=108\\ \Rightarrow4k^2-9k^2+32k^2=108\\ \Rightarrow27k^2=108\Rightarrow k^2=4\\ \Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4;y=6;z=8\\x=-4;y=-6;z=-8\end{matrix}\right.\)

2 tháng 11 2021

Ta có:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a^2}{2^2}=\dfrac{b^2}{3^2}=\dfrac{2c^2}{2.4^2}=\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{2c^2}{32}\)

Áp dụng tcdtsbn , ta có:

\(\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{2c^2}{32}=\dfrac{a^2-b^2+2c^2}{4-9+32}=\dfrac{108}{27}=4\)

\(\Rightarrow\left\{{}\begin{matrix}a=8\\b=12\\c=16\end{matrix}\right.\)

20 tháng 1 2018

Ta có:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Theo tính chất dãy tỉ số bằng nhau ta có:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Mà Giải sách bài tập Toán 7 | Giải sbt Toán 7 nên a, b và c cùng dấu.

Vậy ta tìm được các số a1 = 4; b1 = 6; c1 = 8 hoặc a2 = -4; b2 = -6 và c2 = -8

4 tháng 9 2021

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

\(\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{3b^2}{27}=\dfrac{2c^2}{32}=\dfrac{a^2+3b^2-2c^2}{4+27-32}=\dfrac{-16}{-1}=16\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=64\\b^2=144\\c^2=256\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\pm8\\b=\pm12\\c=\pm16\end{matrix}\right.\)

Vậy \(\left(a;b;c\right)\in\left\{\left(8;12;16\right),\left(-8;-12;-16\right)\right\}\)

Cách khác:

Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2k\\b=3k\\c=4k\end{matrix}\right.\)

Ta có: \(a^2+3b^2-2c^2=-16\)

\(\Leftrightarrow4k^2+27k^2-32k^2=-16\)

\(\Leftrightarrow k^2=16\)

Trường hợp 1: k=4

\(\Leftrightarrow\left\{{}\begin{matrix}a=2k=8\\b=3k=12\\c=4k=16\end{matrix}\right.\)

Trường hợp 2: k=-4

\(\Leftrightarrow\left\{{}\begin{matrix}a=2k=-8\\b=3k=-12\\c=4k=-16\end{matrix}\right.\)

28 tháng 10 2021

tham khảo!!

https://lazi.vn/edu/exercise/tim-cac-so-a-b-c-biet-rang-a-2-b-3-c-4-va-a-2-b-2-2c-2-108

NV
8 tháng 3 2023

Ta chứng minh BĐT sau:

\(\dfrac{1}{x^3+x+2}\ge\dfrac{-x^2+3}{8}\) với \(x>0\)

Thật vậy, BĐT tương đương:

\(\left(x^2-3\right)\left(x^3+x+2\right)+8\ge0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^3+2x^2+x+2\right)\ge0\) (luôn đúng)

Áp dụng:

\(\Rightarrow VT\ge\dfrac{-a^2+3}{8}+\dfrac{-b^2+3}{8}+\dfrac{-c^2+3}{8}=\dfrac{9-\left(a^2+b^2+c^2\right)}{8}=\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

11 tháng 6 2023

\(\)Ta có: \(a+b+c=0 \Rightarrow b+c=-a \Rightarrow (b+c)^2=(-a)^2 \Leftrightarrow b^2+c^2+2bc=a^2 \Leftrightarrow a^2-b^2-c^2=2bc\)

Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)

\(P=...=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)

----
Bổ đề \(a+b+c=0 \Leftrightarrow a^3+b^3+c^3\)

Ở đây ta c/m chiều thuận:
Với \(a+b+c=0 \Leftrightarrow a+b=-c \Rightarrow (a+b)^3=(-c)^3 \Leftrightarrow a^3+b^3+3ab(a+b)=-c^3 \Leftrightarrow a^3+b^3+c^3=3abc(QED)\)