tìm các số \(\overline{abc}\)biết rằng ( \(\overline{abc}\)+\(\overline{cba}\))\(⋮\)68 (các chữ số a,b,c có thể giống nhau)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\overline{abc}\) + \(\overline{cba}\)
A = 100a + 10b +c + 100c + 10b + a
A = 100( a +c) + (c+a) + 20b
A = (a+c) (100 +1) + 20b
A = 9.101 + 20b
A = 909 + 20b
Để A là một số có 3 chữ số thì A \(\le\) 999
\(\Leftrightarrow\) 909 + 20b \(\le\) 999
\(\Leftrightarrow\) 20b \(\le\) 90
\(\Leftrightarrow\)b \(\le\) 9/2
\(\Leftrightarrow\) b \(\in\) { 0; 1; 2; 3; 4}
giải
biến đổi đẳng thức thành
\(\overline{ab}.11.c=\overline{abcabc}\div\overline{abcabc=1001}\)
\(\overline{ab}.c=1001\div11=91\)
phân tích ra thừa số nguyên tố \(91=7.13\)do đó\(\overline{ab}.c\)chỉ có thể là \(13.7\)hoặc \(91.1\)
th1 cho \(\overline{ab}=13,c=7\)
th2 cho \(\overline{ab}=91,c=1\)loại vì b=c
vậy ta có \(13.77.137=137137\)
Sửa một chút nhé:
\(\overline{ab}.\overline{cc}.\overline{abc}=\overline{abcabc}\)
<=> \(\overline{ab}.\left(c.11\right).\overline{abc}=\overline{abc}.1000+\overline{abc}\)
<=> \(\overline{ab}.c.11=\overline{abc}\left(1000+1\right):\overline{abc}\)
<=> \(\overline{ab}.c.11=1001\)
<=> \(\overline{ab}.c=91\)
Biến đổi đến 6c -5a = b tách b trừ c bằng 5 lần c trừ a suy ra b trừ c chia hết cho 5,
b >6,a <c lần lượt thay b bằng 7, 8, 9 tìm được c bằng 2, 3, 4 và a băng 1,2,3
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)
Ta có:
\(\overline{abc}=100a+10b+c=n^2-1\left(1\right)\)
\(\overline{cba}=100c+10b+a=\left(n-2\right)^2=n^2-4n+4\left(2\right)\)
Từ (1) và (2) suy ra:
\(99a-99c=4n-5\\ \Leftrightarrow99\left(a-c\right)=4n-5\)
Suy ra: \(4n-5⋮99\)
Ta có: \(100\le n^2-1\le999\)
\(\Leftrightarrow101\le n^2\le1000\)
\(\Leftrightarrow11\le n\le31\)
\(\Leftrightarrow44\le4n\le124\)
\(\Leftrightarrow39\le4n-5\le119\)
Suy ra: \(4n-5=99\)
Suy ra: \(n=26\)
Suy ra: \(\overline{abc}=26^2-1=675\)
ta có : abcx 17 =2000+abc
==>abc x 16 = 2000
==>abc = 2000 : 16 =125
vậy a=1;b=2;c=5
tk mik nhé
\(\overline{abc}-\overline{cba}=100.a+10.b+c-100.c-10.b-a=99.a-99.c=\)
\(=99\left(a-c\right)=495\Rightarrow a-c=5\)
=> a.c xảy ra các trường hợp sau 6.1=6; 7.2=14; 8.3=24; 9.4=36
Ta có \(b^2=a.c\) nên a.c phải là 1 số chính phương => a=9 và b=4
\(\overline{abc}=\left\{904;914;...;994\right\}\)