K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n⋮5\)

Vậy \(n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\left(đpcm\right)\)

13 tháng 7 2019

Ta có:

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=\left(2n^2-2n^2\right)-\left(3n+2n\right)\)

\(=-5n⋮5\forall n\inℕ\left(đpcm\right)\)

Rất vui vì giúp đc bạn <3

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

NM
17 tháng 10 2021

ta có n và n+1 là hai số tự nhiên liên tiếp

nên nhất định 1 trong hai số là số chẵn

nên n(n+1) chia hết cho 2

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

11 tháng 12 2023

a:

\(1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(1\right)\)

Đặt \(S=1^2+2^2+...+n^2\)

Với n=1 thì \(S_1=1^2=1=\dfrac{1\left(1+1\right)\left(2\cdot1+1\right)}{6}\)

=>(1) đúng với n=1

Giả sử (1) đúng với n=k

=>\(S_k=1^2+2^2+3^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\)

Ta sẽ cần chứng minh (1) đúng với n=k+1

Tức là \(S_{k+1}=\dfrac{\left(k+1+1\right)\cdot\left(k+1\right)\left(2\cdot\left(k+1\right)+1\right)}{6}\)

Khi n=k+1 thì \(S_{k+1}=1^2+2^2+...+k^2+\left(k+1\right)^2\)

\(=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(=\left(k+1\right)\left(\dfrac{k\left(2k+1\right)}{6}+k+1\right)\)

\(=\left(k+1\right)\cdot\dfrac{2k^2+k+6k+6}{6}\)

\(=\left(k+1\right)\cdot\dfrac{2k^2+3k+4k+6}{6}\)

\(=\dfrac{\left(k+1\right)\cdot\left[k\left(2k+3\right)+2\left(2k+3\right)\right]}{6}\)

\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)

\(=\dfrac{\left(k+1\right)\left(k+1+1\right)\left[2\left(k+1\right)+1\right]}{6}\)

=>(1) đúng

=>ĐPCM
b: \(A=1\cdot5+2\cdot6+3\cdot7+...+2023\cdot2027\)

\(=1\left(1+4\right)+2\left(2+4\right)+3\left(3+4\right)+...+2023\left(2023+4\right)\)

\(=\left(1^2+2^2+3^2+...+2023^2\right)+4\left(1+2+2+...+2023\right)\)

\(=\dfrac{2023\cdot\left(2023+1\right)\left(2\cdot2023+1\right)}{6}+4\cdot\dfrac{2023\left(2023+1\right)}{2}\)

\(=\dfrac{2023\cdot2024\cdot4047}{6}+\dfrac{2023\cdot2024}{1}\)

\(=2023\left(\dfrac{2024\cdot4047}{6}+2024\right)⋮2023\)

\(A=\dfrac{2023\cdot2024\cdot4047}{6}+2023\cdot2024\)

\(=2024\left(2023\cdot\dfrac{4047}{6}+2023\right)\)

\(=23\cdot11\cdot8\cdot\left(2023\cdot\dfrac{4047}{6}+2023\right)\)

=>A chia hết cho 23 và 11