\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...-\frac{1}{2012};\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}\)Tính \(\left(\frac{A}{B}\right)^{2013}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{1+\frac{2011}{2}+1+\frac{2010}{3}+1+...+\frac{1}{2012}+1+1}{\frac{1}{2}+...+\frac{1}{2013}}\)
A=\(\frac{\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}}{\frac{1}{2}+...+\frac{1}{2013}}\)
A=\(\frac{2013\left(\frac{1}{2}+...+\frac{1}{2013}\right)}{\frac{1}{2}+...+\frac{1}{2013}}\)
A=2013
Mà 2013: 3 = 671
Vậy A : 3 dư 0 hay\(A⋮3\)
Xét tử:
\(2012+\frac{2011}{2}+\frac{2010}{3}+\frac{2009}{4}+...+\frac{1}{2012}\)
= \(\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1\)
= \(\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}\)
= \(2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)\)
Thay vào ta có:
A = \(\frac{2013\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}\)
=> A = 2013
Mà 2013 chia hết cho 3
=> A chia hết cho 3
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
http://d.f24.photo.zdn.vn/upload/original/2016/02/14/10/03/3204324726_616688374_574_574.jpg
Ta có: Tử là:
B=\(\frac{1}{2013}+\frac{2}{2012}+...+\frac{2012}{2}+\left(1+1+...+1\right)\) (2013 số hạng 1)
=\(\left(\frac{1}{2013}+1\right)+\left(\frac{2}{2012}+1\right)+...+\left(\frac{2012}{2}+1\right)+\left(1\right)\)
=\(\frac{2014}{2013}+\frac{2014}{2012}+...+\frac{2014}{2}+\frac{2014}{2014}\)
=\(2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)
=>A=\(\frac{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=2014
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
Mẫu số của A \(=\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}\)
\(=\left(1+1+...+1\right)+\left(\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}\right)\)
(2012 số 1) (2011 phân số)
\(=\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1\)
\(=\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}\)
\(=2013.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)\)
=> \(A=\frac{1}{2013}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}\)
\(\Rightarrow A=\frac{1}{2013}\)
Vậy \(A=\frac{1}{2013}\)
Ta có: \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=2013+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=1+\left(1+\frac{2012}{2}\right)+...+\left(1+\frac{2}{2012}\right)+\left(1+\frac{1}{2013}\right)\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=\frac{2014}{2014}+\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2012}+\frac{2014}{2013}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=2014.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)
\(\Rightarrow x=2014\)
Lưu ý: số 2013 ở dòng T2 được tách ra làm 2013 số 1