K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

a) \(\left(\sqrt{\dfrac{9}{20}}-\sqrt{\dfrac{1}{2}}\right).\sqrt{2}=\sqrt{\dfrac{9}{20}.2}-\sqrt{\dfrac{1}{2}.2}=\sqrt{\dfrac{9}{10}}-1=\dfrac{3}{\sqrt{10}}-1\)

\(=\dfrac{3\sqrt{10}}{10}-1\)

b) \(\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right)\sqrt{3}=\sqrt{12.3}+\sqrt{27.3}-\sqrt{3.3}\)

\(=\sqrt{36}+\sqrt{81}-\sqrt{9}=6+9-3=12\)

c) \(\left(\sqrt{\dfrac{8}{3}}-\sqrt{24}+\sqrt{\dfrac{50}{3}}\right)\sqrt{6}=\sqrt{\dfrac{8}{3}.6}-\sqrt{24.6}+\sqrt{\dfrac{50}{3}.6}\)

\(=\sqrt{16}-\sqrt{144}+\sqrt{100}=4-12+10=2\)

18 tháng 12 2023

Câu 2:

a: Xét (O) có

AM,AN là các tiếp tuyến

Do đó: AM=AN

=>A nằm trên đường trung trực của MN(1)

Ta có: OM=ON

=>O nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OA là đường trung trực của MN

=>OA\(\perp\)MN tại H và H là trung điểm của MN

b: Xét (O) có

ΔCMN nội tiếp

CN là đường kính

Do đó: ΔCMN vuông tại M

=>CM\(\perp\)MN

Ta có: CM\(\perp\)MN

MN\(\perp\)OA

Do đó: CM//OA

c: Ta có: ΔOMA vuông tại M

=>\(MO^2+MA^2=OA^2\)

=>\(MA^2+3^2=5^2\)

=>\(MA^2=25-9=16\)

=>\(MA=\sqrt{16}=4\left(cm\right)\)

=>AN=4(cm)

Xét ΔMOA vuông tại M có MH là đường cao

nên \(MH\cdot OA=MO\cdot MA\)

=>\(MH\cdot5=3\cdot4=12\)

=>MH=12/5=2,4(cm)

Ta có: H là trung điểm của MN

=>MN=2*MH=4,8(cm)

Chu vi tam giác AMN là:

4+4+4,8=12,8(cm)

a: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}+x-\sqrt{x}-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)

\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}:\dfrac{\sqrt{x}+1-2}{x-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\dfrac{x-1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b: Để A là số nguyên thì \(\sqrt{x}-1⋮\sqrt{x}+1\)

=>\(\sqrt{x}+1-2⋮\sqrt{x}+1\)

=>căn x+1 thuộc {1;2}

=>căn x thuộc {0;1}

mà x<>1

nên x=0