chứng minh rằng :15n+6 và 16n+5 là 2 số nguyên tố cùng nhau?
GIẢI ĐƯỢC THÌ 1 LIKE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN của 16n+5 và 24n+7 là d ( d thuộc N sao )
=> 16n+5 và 24+7 đều chia hết cho d
=> 3.(16n+5) và 2.(24n+7) đều chia hết cho d
=> 48n+15 và 48n+14 đều chia hết cho d
Gọi ƯCLN(16n+5;24n+7) là d
16n+5 chia hết cho d
=> 3(16n+5) chia hết cho d
=> 48n+15 chia hết cho d
24n+7 chia hết cho d
=> 2(24n+7) chia hết cho d
=> 48n+14 chia hết cho d
<=> (48n+15)-(48n+14) chia hết cho d
1 chia hết cho d
=> d = 1
<=> ƯCLN(16n+5;24n+7) =1
Gọi 2 số đó là 2k+1 và 2k+3 (k \(\in\)N).
Đặt ƯCLN(2k+1, 2k+3)=d
=> (2k+3)-(2k+1) chia hết cho d
=> 2k+3-2k-1 = 2 chia hết cho d
=> d \(\in\)Ư(2)={1; 2}
Mà d \(\ne\)2 (2k+1 và 2k+3 đều lẻ)
=> ƯCLN(2k+1, 2k+3)=d=1
Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau (đpcm).
Gọi ƯCLN(a;a+2)=d(a lẻ)
Ta có: a chia hết cho d
a+2 chia hết cho d
=>a+2-a chia hết cho d
=>2 chia hết cho d mà a lẻ
nên ƯCLN(a;a+2)=1
Vậy thỏa mãn đề 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau
Goi UCLN ( 15n + 1,30n + 1 ) la d
=> 15n + 1 chia het cho d (1)
30n + 1 chia hết cho d (2)
Từ (1) => 2 x ( 15n + 1 ) chia hết cho d hay 30n + 2 chia hết cho d (3)
Từ (2) và (3) => ( 30n + 2 ) - ( 30n + 1 ) chia hết cho d
hay 1 chia hết cho d
hay d = 1
=> 15n + 1 và 30n + 1 là 2 số nguyên tố cùng nhau
Vay 15n + 1 và 30n + 1 là 2 số nguyên tố cùng nhau
chào tham khảo nhé :
Gọi d là ước chung lớn nhất của 12n+4 và 16n+5 ( d \(\in\)N*)
Khi đó : \(\hept{\begin{cases}12n+4⋮d\\16n+5⋮d\end{cases}}\)
<=> \(\hept{\begin{cases}4.\left(12n+4\right)⋮d\\3.\left(16n+5\right)⋮d\end{cases}}\)
<=> \(\hept{\begin{cases}48n+16⋮d\\48n+15⋮d\end{cases}}\)
<=> \(\left(48n+16\right)-\left(48n+15\right)⋮d\)
<=> \(1⋮d\)
Mà d \(\in\)N* => d = 1
=> 12n+4 và 16n+5 là 2 số nguyên tố cùng nhau
Vậy 12n+4 và 16n+5 là 2 số nguyên tố cùng nhau
a)
Gọi ƯCLN của 2n+1 và 3n+1 là d
=> 3(2n+1) - 2(3n+1) chia hết cho d
=> 6n + 3 - 6n - 2 Chia hết cho d
=> 1 Chia hết cho d
=> d=1
Vậy (2n+1;3n+1)=1
b)
Làm t2
a) Gọi d là ƯCLN(b;a-b)
=> a chia hết cho d
a-b chia hết cho d
=> a-b-a chia hết cho d
hay b chia hết cho d
mà ƯCLN(a;b)=1
=> d=1
Vậy b và a-b là hai số nguyên tố cùng nhau
a, Gọi (b; a -b) là d
=> b chia hết cho d (1)
a - b chia hết cho d
=> a chia hết cho 2 (2)
Từ (1) và (2) => d thuộc ƯC(a; b)
Mà (a; b) = 1
=> 1 chia hết cho d
=> d = 1.
=> (b; a - b) = 1
Vậy b và a - b là 2 số nguyên tố cùng nhau
ai cần
mai cần