K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Bài 1:

Ta có:

\(\text{VT}=\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\)

\(=a-\frac{2ab^2}{a+2b^2}+b-\frac{2bc^2}{b+2c^2}+c-\frac{2ca^2}{c+2a^2}=(a+b+c)-2\left(\frac{ab^2}{a+2b^2}+\frac{bc^2}{b+2c^2}+\frac{ca^2}{c+2a^2}\right)\)

\(=3-2M(*)\)

Áp dụng BĐT Cauchy ta có:

\(M=\frac{ab^2}{a+b^2+b^2}+\frac{bc^2}{b+c^2+c^2}+\frac{ca^2}{c+a^2+a^2}\leq \frac{ab^2}{3\sqrt[3]{ab^4}}+\frac{bc^2}{3\sqrt[3]{bc^4}}+\frac{ca^2}{3\sqrt[3]{ca^4}}\)

\(\Leftrightarrow M\leq \frac{1}{3}(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2})\)

Tiếp tục áp dụng BĐT Cauchy:

\(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\leq \frac{ab+ab+1}{3}+\frac{bc+bc+1}{3}+\frac{ca+ca+1}{3}=\frac{2(ab+bc+ac)+3}{3}\)

\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\) (quen thuộc)

\(\Rightarrow M\leq \frac{1}{3}.\frac{2.3+3}{3}=1(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq 3-2.1=1\)

(đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Bài 2:

Áp dụng BĐT Cauchy -Schwarz:

\(\text{VT}=\frac{a^3}{a^2+a^2b^2}+\frac{b^3}{b^2+b^2c^2}+\frac{c^3}{c^2+a^2c^2}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2}\)

hay:

\(\text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+a^2b^2+b^2c^2+c^2a^2}(*)\)

Mặt khác, theo BĐT Cauchy ta dễ thấy:

\(a^4+b^4+c^4\geq a^2b^2+b^2c^2+c^2a^2\)

\(\Rightarrow (a^2+b^2+c^2)^2\geq 3(a^2b^2+b^2c^2+c^2a^2)\)

\(\Leftrightarrow 1\geq 3(a^2b^2+b^2c^2+c^2a^2)\Rightarrow a^2b^2+b^2c^2+c^2a^2\leq \frac{1}{3}(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+\frac{1}{3}}=\frac{3}{4}(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

NV
8 tháng 2 2021

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)

BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)

Ta có:

\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)

\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)

Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)

\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)

Cộng vế với vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)

21 tháng 3 2021

Ta có: \(\dfrac{a^3}{a^2+2b^2}=a-\dfrac{2ab^2}{a^2+2b^2}\ge a-\dfrac{2ab^2}{3\sqrt[3]{a^2b^4}}=a-\dfrac{2}{3}\sqrt[3]{ab^2}\ge a-\dfrac{2}{9}\left(a+b+b\right)=a-\dfrac{2}{9}\left(a+2b\right)\) Chứng minh tương tự ta được:

\(\dfrac{b^3}{b^2+2c^2}\ge b-\dfrac{2}{9}\left(b+2c\right);\dfrac{c^3}{c^2+2a^2}\ge c-\dfrac{2}{9}\left(c+2a\right)\)

\(\Rightarrow\dfrac{a^3}{a^2+2b^2}+\dfrac{b^3}{b^2+2c^2}+\dfrac{c^3}{c^2+2a^2}\ge a+b+c-\dfrac{2}{9}\left(a+2b+b+2c+c+2a\right)=a+b+c-\dfrac{2}{9}\left(3a+3b+3c\right)=\dfrac{1}{3}\left(a+b+c\right)\ge\dfrac{1}{3}\cdot3\sqrt[3]{abc}=1\)Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)

8 tháng 12 2018

Câu hỏi t/tự

Ta có : \(a+b+c=3\Rightarrow a^2+b^2+c^2\ge3\)

Theo BĐT AM - GM ta có :

\(a^4+b^2\ge2a^2b\)

\(b^4+c^2\ge2b^2c\)

\(c^4+a^2\ge2c^2a\)

\(2a^2b^2+2a^2\ge4a^2b\)

\(2b^2c^2+2b^2\ge4b^2c\)

\(2c^2a^2+2c^2\ge4c^2a\)

Cộng từng vế BĐT ta được :

\(\left(a^2+b^2+c^2\right)^2+3\left(a^2+b^2+c^2\right)\ge6\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow a^2b+b^2c+c^2a\le\dfrac{3^2+3^2}{6}=3\)

Theo BĐT Cauchy schwarz dưới dạng en-gel ta có :

\(VT\ge\dfrac{9}{6+a^2b+b^2c+c^2a}=\dfrac{9}{9}=1\)

Dấu bằng xảy ra khi \(a=b=c=1\)

1 tháng 1 2019

Viết lại BĐT:\(\dfrac{a^2b}{a^2b+2}+\dfrac{b^2c}{b^2c+2}+\dfrac{c^2a}{c^2a+2}\le1\)

Áp dụng BĐT AM-GM:

\(VT\le\sum\dfrac{a^2b}{3\sqrt[3]{a^4b^2}}=\dfrac{1}{3}\left(\sqrt[3]{a^2b}+\sqrt[3]{b^2c}+\sqrt[3]{c^2a}\right)\)

\(\le\dfrac{1}{9}\left(3a+3b+3c\right)=1\)

Suy ra đpcm

18 tháng 5 2023

Ta có \(a+b^2\le\dfrac{a^2+1}{2}+b^2=\dfrac{a^2+2b^2+1}{2}\)

\(\Rightarrow\dfrac{2a^2}{a+b^2}\ge\dfrac{4a^2}{a^2+2b^2+1}=\dfrac{4a^4}{a^4+2b^2a^2+a^2}\). Lập 2 BĐT tương tự rồi áp dụng bất đẳng thức BCS, ta có:

\(\dfrac{2a^2}{a+b^2}+\dfrac{2b^2}{b+c^2}+\dfrac{2c^2}{c+a^2}\ge\dfrac{\left(2a^2+2b^2+2c^2\right)^2}{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2}\) \(=\dfrac{4\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2+3}\)\(=\dfrac{4.3^2}{3^2+3}=3\).

Mà \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\) nên ta có đpcm. ĐTXR \(\Leftrightarrow a=b=c=1\)