Cho đường tròn tâm O bán kính R và dây BC cố định, A là điểm chuyển động trên cung lớn BC. Hai đường cao BE và CF của tam giác ABC cắt nhau tại H.
a) Chứng minh rằng: góc AFE = góc ACB
b) Kẻ đường kính ON⊥BC tại M (N thuộc cung nhỏ BC). AN∩BC tại D. Chứng minh rằng AB.CN=AN.BD.
c) Đường thẳng AH cắt đường tròn tâm O tại K. Chứng minh rằng: BC.AK=AB.CK+AC.BK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BEC=góc BFC=90 độ
=>BFEC nội tiếp
=>góc BFE+góc BCE=180 độ
=>góc AFE=góc ACB
b: Xét ΔABD và ΔANC có
góc ABD=góc ANC
góc BAD=góc NAC
=>ΔABD đồng dạng với ΔANC
=>AB/AN=BD/NC
=>AB*NC=AN*BD
bạn ơi cho mình hỏi bài này ở đề năm bao nhiêu của thành phố nào vậy bạn?????
3. Xét tứ giác BFHD có:
HFB + HDB = 90º + 90º = 180º => BFHD là tứ giác nội tiếp. ⇒ FBH = FDH (1)
Tương tự có DHEC là tứ giác nội tiếp, ⇒HCE = HDE (2)
Mà BFEC là tứ giác nội tiếp nên FCE = FBE (3)
Từ (1) (2) (3)⇒ 2ABE = FDH + HDE = FDE
Vì BFEC là tứ giác nội tiếp đường tròn tâm I, đường kính BC nên theo quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung EF, ta có: FIE = 2.FBE = 2.ABE
⇒FIE = FDE
4.Vì BFEC là tứ giác nội tiếp nên:
ABC = 180º – FEC = AEF => ΔAEF ~ ΔABC (g.g)
Suy ra độ dài EF không đổi khi A chạy trên cung lớn BC của đường tròn (O)
Gọi K là giao điểm thứ 2 của ED và đường tròn đường kính BC
Theo tính chất góc ngoài: FDE = DKE + DEK
Theo ý 3 và quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung, có FDE = FIE = 2.DKE
⇒DKE = DEK => ΔDEK cân tại D => DE = DK
Chu vi ΔDEF là P = DE + EF + FD = EF + FD + DK = EF + FK
Có FK ≤ BC ( dây cung – đường kính) => P ≤ EF + BC không đổi
Dâu bằng xảy ra khi và chỉ khi FK đi qua I ⇔ D trùng I ⇔ ΔABC cân tại A.
Vậy A là điểm chính giữa của cung lớn BC
a/
Ta thấy F và E đều nhìn BC dưới cùng 1 góc 90 độ nên E,F nằm trên đường tròn đường kính BC ta gọi là đường tròn (O')
=> B,F,E,C cùng nawmg trên một đường tròn
b/
Xét đường tròn (O) ta có
sđ \(\widehat{BQP}=\) sđ \(\widehat{BCP}=\frac{1}{2}\) sđ cung BP (góc nội tiếp đường tròn) (1)
Xét đường tròn (O') ta có
sđ \(\widehat{BEF}=\) sđ \(\widehat{BCP}=\frac{1}{2}\) sđ cung BF (góc nội tiếp đường tròn) (2)
Từ (1) và (2) \(\Rightarrow\widehat{BQP}=\widehat{BEF}\) => PQ//EF (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 có hai góc ở vị trí đồng vị thì chúng // với nhau
c/ ta thấy F và D cùng nhìn BH dưới cùng 1 góc 90 độ nên BDHF là tứ giác nội tiếp
sđ \(\widehat{ABE}=\)sđ \(\widehat{FDA}=\frac{1}{2}\) sđ cung FH (1)
Ta thấy D và E cùng nhìn AB đướ cùng 1 góc 90 độ nên ABDE là tứ giác nội tiếp
sđ \(\widehat{ABE}=\)sđ \(\widehat{ADE}=\frac{1}{2}\) sđ cung AE (2)
Mà \(\widehat{FDA}+\widehat{ADE}=\widehat{FDE}\) (3)
Từ (1) (2) và (3) \(\Rightarrow\widehat{FDE}=2.\widehat{ABE}\left(dpcm\right)\)
a) Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC
Do đó: BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Ta có: BCEF là tứ giác nội tiếp(cmt)
nên \(\widehat{EBC}=\widehat{EFC}\)(hai góc cùng nhìn cạnh EC)
hay \(\widehat{MBC}=\widehat{HFE}\)(1)
Xét (O) có
\(\widehat{MBC}\) là góc nội tiếp chắn cung CM
\(\widehat{MNC}\) là góc nội tiếp chắn cung CM
Do đó: \(\widehat{MBC}=\widehat{MNC}\)(Hệ quả góc nội tiếp)
hay \(\widehat{MBC}=\widehat{HNM}\)(2)
Từ (1) và (2) suy ra \(\widehat{HFE}=\widehat{HNM}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên FE//MN(Dấu hiệu nhận biết hai đường thẳng song song)
a) Xét tam giác ABC có
BE là đường cao của AC tại E => góc BEA = góc BEC =90
CF là đường cao của AB tại F => góc CFA = góc CFB =90
AD là đường cao của BC tại D => góc ADB = góc ADC
xét tứ giác BFEC có
góc BFC = góc BEC = 90
mà F và E là 2 đỉnh đối => tứ giác nội tiếp (DHNB)
=> góc EFC = góc EBC (2 góc nội tiếp chắn EC)
=> góc FEH = góc HCB ( 2 góc nội tiếp chắn BF)
Xét (O) có
góc MNC = góc EBC (2 góc nội tiếp chắn MC )
=>góc EFC = góc MNC
mà 2 góc ở vị trí đồng vị => song song (tc)
b) Xét tứ giác BFHD có
góc BDA + góc CFB =180
mà F và D là 2 đỉnh kề
=> BFHD là tứ giác nội tiếp (DHNB)
=> góc CFD= góc EBC (góc nội tiếp chắn HD)
=> Góc EFC = góc CFD (= góc EBC)
=> FC là phân giác của góc DFE
=> FH là phân giác của góc DFE (H thuộc DC)
=Xét tứ giác CDHE có
góc ADC + góc CEB =180
mà D và E là 2 đỉnh kề
=> tứ giác CDHE nội tiếp
=> góc HCB = góc HED(2 góc nội tiếp chắn HD)
=> góc FEH = góc HEB (= góc HCD)
=> HE là phan giác góc FED
xét tma giác FED có
FH là phân giác góc EFD
EH lag phân giác góc FED
mà FH giao với EH tại H
=> H là giao điểm 3 đường phân giác của tam giác EFD
=> H là tâm đường tròn nội tiếp tam giác EFD
c) gọi giao điểm của đường vuông góc kẻ từ A -> EF cắt EF tại K và cắt BE tại T và cắt (O) tại I
vì TK vuông góc với EF tại K
=> góc TKE = 90
xét tam giác TKE và tam giác TEA có
góc T chung
góc TKE = góc TEA (=90)
=> đồng dạng(g-g) => góc TEK = góc TAE
Xét tứ giác nội tiếp BFEC có
Góc TEK = góc FCB ( 2 góc nội tiếp chắn BF;T thuộc BE)
Xét (O) có
Góc TAE = góc CBI ( 2 góc nội tiếp chắn IC)
=> góc FCB = góc IBC
mà 2 góc ở vị trí so le trong => BI // CF (tc)
mà CF vuông góc với AB
=> IB vuông góc với AB
=> góc IBA=90 (tc)
xét (O)
=> góc IBA=1/2 số đo cung AI (góc nội tiếp chắn AI)=> số đo cũng AI = 180
=> AI là đường kính của đường tròn tâm (O)
=> A,I,O thẳng hàng
mà AI vuông góc với EF => đường vuông góc với EF sẽ luông đi qua điểm O
mà O cố định => đường vuông góc với EF sẽ luông đi qua điểm O cố định
a: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó:BFEC là tứ giác nội tiếp
b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB∼ΔAFC
Suy ra: AE/AF=AB/AC
hay \(AE\cdot AC=AF\cdot AB\)
a) Chứng minh \(\widehat{AFE}=\widehat{ACB}\)
\(\widehat{BFC}=\widehat{CEB}=90^0\)
\(\Rightarrow\text{BFEC nội tiếp}\)
\(\Rightarrow\widehat{AFE}=\widehat{ACB}\)
b) Chứng minh \(AB\times CN=AN\times BD\)
\(ON\perp BC\)
\(\Rightarrow\text{N là điểm chính giữa của cung nhỏ BC}\)
\(\Rightarrow\stackrel\frown{BN}=\stackrel\frown{NC}\)
\(\Rightarrow\widehat{BAD}=\widehat{NAC}\)
\(\text{mà }\widehat{B_1}=\widehat{N_1}\left(\text{cùng chắn }\stackrel\frown{AC}\right)\)
\(\Rightarrow\Delta BAD\sim\Delta NAC\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{AN}=\dfrac{BD}{CN}\)
\(\Rightarrow AB\times CN=AN\times BD\)
c) Chứng minh \(BC\times AK=AB\times CK+AC\times BK\)
\(\odot\) \(\Delta ABC\text{ có 2 đường cao BE và CF cắt nhau tại H}\)
\(\Rightarrow\text{H là trực tâm của }\Delta ABC\)
\(\Rightarrow AK\perp BC\)
\(\odot\) Suy ra \(\dfrac{1}{2}\times BC\times AK=S_{ABKC}\) (1)
\(\odot\) \(\text{Gọi T là giao điểm của AK và BC}\)
\(\widehat{AFC}=\widehat{CTA}=90^0\)
\(\Rightarrow\text{AFTC nội tiếp}\)
\(\Rightarrow\widehat{A_1}=\widehat{C_1}\)
\(\text{mà }\widehat{A_1}=\widehat{C_2}\)
\(\Rightarrow\widehat{C_1}=\widehat{C_2}\)
\(\Rightarrow\Delta CHK\text{ có CT vừa là đường cao vừa là đường phân giác}\)
\(\Rightarrow\text{CB là đường trung trực của HK}\)
\(\Rightarrow\left\{{}\begin{matrix}CK=CH\\BK=BH\end{matrix}\right.\)
\(\odot\) \(\dfrac{1}{2}\times AB\times CK=\dfrac{1}{2}\times AF\times CH+\dfrac{1}{2}\times FB\times CH=S_{AHC}+S_{BHC}=S_{AHC}+S_{BKC}\)
\(\odot\) \(\dfrac{1}{2}\times AC\times BK=\dfrac{1}{2}\times AE\times BH+\dfrac{1}{2}\times EC\times BH=S_{AHB}+S_{BHC}\)
\(\odot\) Suy ra \(\dfrac{1}{2}\times AB\times CK+\dfrac{1}{2}\times AC\times BK=S_{AHC}+S_{BKC}+S_{AHB}+S_{BHC}=S_{ABKC}\) (2)
Từ (1) và (2) ⇒ đpcm
o mik xem hình