K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAOM vuông tại A có tan AOM=AM/OA=căn 3

nên góc AOM=60 độ

=>sđ cung nhỏ AI=60 độ

=>sđ cung lớn AI=300 độ

b: Xét (O) có

MA,MC là tiếp tuyến

nên MA=MC và OM là phân giác của góc COA(1)

Xét (O) có

NC,NB là tiếp tuyến

nên NC=NB và ON là phân giác của góc COB(2)

Từ (1), (2) suy ra góc MON=1/2*180=90 độ

Xét ΔMON vuông tại O có OC là đường cao

nên MC*CN=OC^2

=>AM*BN=R^2

c: góc IAC=90 độ-góc OIA

góc MAI=90 độ-góc OAI

mà góc OIA=góc OAI

nên góc IAC=góc IAM

=>AI là phân giác của góc MAC

mà MI là phân giác của góc AMC

nên I là tâm đường tròn nội tiếp ΔMAC

a: góc MAO+góc MCO=180 độ

=>MAOC nội tiếp

b: góc AKB=1/2*180=90 độ

=>AK vuông góc MB

=>MK*MB=MA^2

MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên OM là trung trực của AC

=>OM vuông góc AC tại H

=>MH*MO=MA^2=MK*MB

=>MH/MB=MK/MO

=>ΔMHK đồng dạng với ΔMBO

=>góc MHK=góc MBO=góc ACK

c: AK^2/AM^2+MK/MB

=MK*KB/MK*MB+MK/MB

=KB/MB+MK/MB=1

15 tháng 10 2023

a: Xét (O) có

MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên OM là trung trực của AC

=>OM vuông góc AC(1)

Xét (O) có

ΔACB nội tiếp

AB làđường kính

Do đo: ΔACB vuông tại C

=>AC vuông góc CB

=>\(AC\perp DB\left(2\right)\)

Từ (1), (2) suy ra DB//MO

Xét ΔABD có

O là trung điểm của AB

OM//DB

Do đó; M là trung điểm của AD
b:

Gọi I là giao điểm của MB với CH

CH\(\perp\)AB

DA\(\perp\)AB

Do đó: CH//DA

Xét ΔBDA có CH//DA

nên \(\dfrac{CH}{DA}=\dfrac{BH}{BA}\)

=>\(CH=\dfrac{BH}{BA}\cdot DA\)

Xét ΔBMA có IH//AM

nên \(\dfrac{IH}{AM}=\dfrac{BH}{BA}\)

=>\(IH=AM\cdot\dfrac{BH}{BA}\)

\(\dfrac{CH}{IH}=\dfrac{\dfrac{BH}{BA}\cdot DA}{\dfrac{BH}{BA}\cdot AM}=\dfrac{DA}{AM}=2\)

=>CH=2IH

=>I là trung điểm của CH

16 tháng 10 2023

em cảm ơn ạ

15 tháng 10 2023

Xét (O) có

MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên OM là đường trung trực của AC

=>OM vuông góc AC (1)

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC vuông góc DB(2)

Từ (1), (2) suy ra MO//DB

Xét ΔADB có

O là trung điểm của AB

OM//DB

Do đó: M là trung điểm của AD