K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2022

loading...

Vì đây là 7 số nguyên liên tiếp

nên A chia hết cho 7

6 tháng 6 2017

a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\)\(5⋮5\) (1)

\(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)

Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)

b, \(n^3\left(n^2-7\right)-36n\)

\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)

\(=n\left[\left(n^3-7n\right)^2-36\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)

6 tháng 6 2017

Bn Mai Xuân Phong ơi!Câu a, 5x3hay là 5n3 vậy?

26 tháng 10 2022

\(=n\left(n^3-7n-36\right)\)

\(=n\left(n^3-4n^2+4n^2-16n+9n-36\right)\)

\(=n\left(n-4\right)\left(n^2+4n+9\right)\)

TH1: n=7k

\(A=7k\left(7k-4\right)\cdot B⋮7\)

TH2: n=7k+1

\(A=\left(7k+1\right)\left(7k-3\right)\left(49k^2-14k+1+28k+4+9\right)\)

\(=\left(7k+1\right)\left(7k-3\right)\left(49k^2+14k+14\right)⋮7\)

TH3: n=7k+2

\(A=\left(7k+2\right)\left(7k-2\right)\left(49k^2+28k+4+28k+8+9\right)\)

\(=C\cdot\left(49k^2+56k+14\right)⋮7\)

Nếu n=10 thì A ko chia hết cho 7 nha bạn

15 tháng 10 2020

Dễ dàng phân tích được

\(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\Rightarrow\left\{{}\begin{matrix}A⋮3\\A⋮5\\A⋮7\end{matrix}\right.\)

Do \(\left(3;5;7\right)=1\Rightarrow A⋮105\)

25 tháng 7 2023

�=�[�2(�2−7)2−36]=�[(�3−7�)2−36]

=�(�3−7�−6)(�3−7�+6)

=�(�−3)(�+1)(�+2)(�−2)(�−1)(�+3)

⇒� là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7

25 tháng 7 2023

14 tháng 7 2015

\(A=n^7-14n^5+49n^3-36n=\left(n^3+1\right)\left(n^3-1\right).n+7\left(-2n^5+7n^3-5n\right)\)

Xét các số dư của n khi chia cho 7.

Xét mod 7:

+n ≡ 0 => n⋮ 7 => n(n3+1)(n3-1)⋮7 => A⋮7

+n ≡ 1; 2; 4;  => n3 ≡ 1 => n3-1 ≡ 0 => n3-1⋮7 => n(n3+1)(n3-1)⋮7 => A⋮7

+n ≡ 3; 5; 6  => n3  ≡ 6 => n3 + 1 ≡ 0 => n3 + 1 ⋮7 => n(n3+1)(n3-1)⋮7 => A⋮7

Vậy A luôn chia hết cho 7.

 

20 tháng 10 2018

Ta có:

\(A=n^3\left(n^2-7\right)^2-36n\)

\(A=n^3\left(n^4-14n^2+49\right)-36n\)

\(A=n^7-14n^5+49n^3-36n\)

\(A=n^7+12n^5+36n^3-25n^5-n^5-12n^3-36n+25n^3\)

\(A=n^3\left(n^4+12n^2+36-25n^2\right)-n\left(n^4+12n^2+36-25n^2\right)\)

\(A=\left(n^3-n\right)\left(n^4+12n^2+36-25n^2\right)\)

\(A=n\left(n^2-1\right)\left(n^4+12n^2+36-25n^2\right)\)

\(A=n\left(n-1\right)\left(n+1\right)\left[\left(n^2+6\right)^2-\left(5n\right)^2\right]\)

\(A=n\left(n-1\right)\left(n+1\right)\left(n^2-5n+6\right)\left(n^2+5n+6\right)\)

\(A=n\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n-2\right)\left(n+2\right)\left(n+3\right)\)

\(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮7\)

*Tích 7 số nguyên liên tiếp chia hết cho 7.

16 tháng 11 2022

loading...

Vì đây là 7 số liên tiếp

nên A chia hết cho 7!

=>A chia hết cho 210

17 tháng 6 2018

Xét \(5040=2^4.3^2.5.7\)

Phân tích:

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^2-7n\right)^2-6^2\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

Ta có:

\(n^3-7n-6=\left(n+1\right)\left(n+2\right)\left(n-3\right)\)

\(n^3-7n+6=\left(n-1\right)\left(n-2\right)\left(n+3\right)\)

Do đó \(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Đây là tích 7 số nguyên liên tiếp. Trong 7 số nguyên liên tiếp:

- Tồn tại 1 bội số của 5 (nên A chia hết cho 5)

- Tồn tại 1 bội số của 7 (nên A chia hết cho 7)

- Tồn tại 2 bội số của 3 (nên A chia hết cho 9)

- Tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 (nên A chia hết cho 16)

A chia hết cho các số 5, 7, 9, 16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040

18 tháng 9 2018

b)P = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4

=>P= [(x + y)(x + 4y)][(x + 2y)(x + 3y)] + y^4

=> P = (x² + 5xy + 4y²)( x² + 5xy + 6y²) + y^4

Đặt x² + 5xy + 5y² = t ( t Є Z)

=> A = (t - y²)( t + y²) + y^4
=> A = t² –y^4 + y^4
=> A = t²
=> A = (x² + 5xy + 5y²)²

Vì x, y, z Є Z
=> { x² Є Z,
{ 5xy Є Z,
{ 5y² Є Z


=> x² + 5xy + 5y² Є Z

=> (x² + 5xy + 5y²)² là số chính phương.

Vậy A là số chính phương.

18 tháng 9 2018

a) Ta có:

\(A=n^3\left(n^2-7\right)^2-36n\)

\(A=n.n^2\left(n^2-7\right)^2-6^2n\)

\(A=n\left[n^2\left(n^2-7\right)^2-6^2\right]\)

\(A=n\left\{\left[n\left(n^2-7\right)\right]^2-6^2\right\}\)

\(A=n\left[\left(n^3-7n\right)^2-6^2\right]\)

\(A=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(A=n\left(n-1\right)\left(n^2+n-6\right)\left(n+2\right)\left(n^2-2n-3\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+2\right)\left(n-3\right)\)

\(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là tích của 7 số tự nhiên liên tiếp

=> A chia hết cho 3, 5 , 7

Mà 3,5,7 là những số nguyên tố cùng nhau

=> A chia hết cho 3.5.7

=> A chia hết cho 105

b) Ta có:

\(P=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(P=\left[\left(x+y\right)\left(x+4y\right)\right]\left[\left(x+2y\right)\left(x+3y\right)\right]+y^4\)

\(P=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

\(P=\left(x^2+5xy+5y^2-y^2\right)\left(x^2+5xy+5y^2+y^2\right)+y^4\)

\(P=\left(x^2+5xy+5y^2\right)^2-y^4+y^4\)

\(P=\left(x^2+5xy+5y^2\right)^2\)

Vậy P là số chính phương