Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đây là 7 số nguyên liên tiếp
nên A chia hết cho 7!
=>A chia hết cho 5040
=>A chia hết cho 210
Ta có:
\(A=n^3\left(n^2-7\right)^2-36n\)
\(A=n^3\left(n^4-14n^2+49\right)-36n\)
\(A=n^7-14n^5+49n^3-36n\)
\(A=n^7+12n^5+36n^3-25n^5-n^5-12n^3-36n+25n^3\)
\(A=n^3\left(n^4+12n^2+36-25n^2\right)-n\left(n^4+12n^2+36-25n^2\right)\)
\(A=\left(n^3-n\right)\left(n^4+12n^2+36-25n^2\right)\)
\(A=n\left(n^2-1\right)\left(n^4+12n^2+36-25n^2\right)\)
\(A=n\left(n-1\right)\left(n+1\right)\left[\left(n^2+6\right)^2-\left(5n\right)^2\right]\)
\(A=n\left(n-1\right)\left(n+1\right)\left(n^2-5n+6\right)\left(n^2+5n+6\right)\)
\(A=n\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n-2\right)\left(n+2\right)\left(n+3\right)\)
\(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮7\)
*Tích 7 số nguyên liên tiếp chia hết cho 7.
\(=n\left(n^3-7n-36\right)\)
\(=n\left(n^3-4n^2+4n^2-16n+9n-36\right)\)
\(=n\left(n-4\right)\left(n^2+4n+9\right)\)
TH1: n=7k
\(A=7k\left(7k-4\right)\cdot B⋮7\)
TH2: n=7k+1
\(A=\left(7k+1\right)\left(7k-3\right)\left(49k^2-14k+1+28k+4+9\right)\)
\(=\left(7k+1\right)\left(7k-3\right)\left(49k^2+14k+14\right)⋮7\)
TH3: n=7k+2
\(A=\left(7k+2\right)\left(7k-2\right)\left(49k^2+28k+4+28k+8+9\right)\)
\(=C\cdot\left(49k^2+56k+14\right)⋮7\)
Nếu n=10 thì A ko chia hết cho 7 nha bạn
sử dụng phương pháp quy nạp
*với n=1 thì 2 chia hết cho2
*với n=2 thì 3*4=12 chia hết cho 4
thử đúng đến n=k cần cm n=k+
ta có (k+1)(k+2)(k+3).....(k+k-1)(k+k)chia hết cho 2k
n=k+1 biểu thức có dạng (k+1+1)(k+1+2)....(k+1+k)(k+1+k+1)
=2(k+1)(k+2)(k+3)....(k+k-1)(k+k)(k+k+1)chia hết cho2k*2=2k+1
Lời giải:
a) Phản chứng. Giả sử tồn tại \( n\in\mathbb{N}|n^2+7n-40\vdots 121\)
\(\Rightarrow n^2+7n-40\vdots 11\)
\(\Leftrightarrow n^2-4n+4+11n-44\vdots 11\)
\(\Leftrightarrow n^2-4n+4=(n-2)^2\vdots 11\)
\(\Leftrightarrow n-2\vdots 11\) (vì \(11\in\mathbb{P}\) )
Do đó, đặt \(n=11k+2\)
Ta có, \(n^2+7n-40\vdots 121\)
\(\Leftrightarrow (11k+2)^2+7(11k+2)-40\vdots 121\)
\(\Leftrightarrow 121k^2+121k-22\vdots 121\)
\(\Leftrightarrow 22\vdots 121\) (vô lý)
Do đó, điểu giả sử là sai, nghĩa là không tồn tại bất kỳ số tự nhiên nào thỏa mãn \(n^2+7n-40\vdots 121\)
Hay \(n^2+7n-40\not\vdots 121\) (đpcm)
Lời giải:
b) Giả sử phản chứng, nghĩa là
\(a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2\vdots 25\)
Thực hiện khai triển bằng hằng đẳng thức, ta có:
\(a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2\)
\(=5a^2+20a+30\)
Khi đó:
\(a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2\vdots 25\)
\(\Leftrightarrow 5a^2+20a+30\vdots 25\)
\(\Leftrightarrow a^2+4a+6\vdots 5\)
Xét \(a\equiv 0\pmod 5\rightarrow a^2+4a+6\equiv 6\not\equiv 0\pmod 5\)
Xét \(a\equiv 1\pmod 5\rightarrow a^2+4a+6\equiv 1+4+6\not\equiv 0\pmod 5\)
Xét \(a\equiv 2\pmod 5\rightarrow a^2+4a+6\equiv 18\not\equiv 0\pmod 5\)
Xét \(a\equiv 3\pmod {5}\rightarrow a^2+4a+6=27\not\equiv 0\pmod {5}\)
Xét \(a\equiv 4\pmod 5\Rightarrow a^2+4a+6\equiv 38\not\equiv 0\pmod 5\)
Do đo, \(a^2+4a+6\not\vdots 5\), nghĩa là điều giả sử là sai. Ta có đpcm.
Vì đây là 7 số liên tiếp
nên A chia hết cho 7!
=>A chia hết cho 210