K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2020

\(\text{AB song song với CD và AB=CD}\Rightarrow ABCD\text{ là hình bình hành}\)

\(\Rightarrow AD\text{//}BC\text{ và }AD=BC\)

a)

Từ ĐKĐB dễ thấy các tứ giác ABID,ABCK là hình bình hành do có các cặp cạnh đối song song với nhau

\(\Rightarrow AB=DI;AB=CK\Rightarrow DI=CK\Rightarrow DK=CI\)

Áp dụng định lý Ta-lét:

\(AB||DK\Rightarrow\frac{DE}{EB}=\frac{DK}{AB}\)

\(AB||CI\Rightarrow\frac{IF}{FB}=\frac{CI}{AB}\)

Maf \(CI=DK\)(cmt)

\(\Rightarrow\frac{DE}{EB}=\frac{IF}{FB}\)Theo định lý Ta-let đảo suy ra EF\(||\)CD

b)Từ các đường thẳng song song, và DI=CK=AB, áp dụng định lý Ta-let:

\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CE-CK}{AB}=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)

\(\Rightarrow AB^2=EF.CD\)( đpcm ) 

18 tháng 9 2019

Đáp án D

23 tháng 10 2021

C

23 tháng 10 2021

C

3 tháng 7 2023

A B C B

Đề bài phải sửa thành "biết AD=AB" mới làm được

a/

ABCD là hình thàng cân => AD=BC

Mà AD=AB (gt)

=> AD=BC

b/

ABCD là hình thang cân

\(\Rightarrow\widehat{BAD}=\widehat{ABC}\)

\(\widehat{BCD}+\widehat{ABC}=180^o\) (Hai góc trong cùng phía)

\(\Rightarrow\widehat{BCD}+\widehat{BAD}=180^o\)

=> ABCD là tứ giác nội tiếp (Tứ giác có tổng 2 góc đối bù nhau là tứ giác nt)

Ta có

Cung AB và cung BC có hai dây trương cung bằng nhau

AB=BC (cmt) => sđ cung AB = sđ cung BC (1)

\(sđ\widehat{ADB}=\dfrac{1}{2}sđcungAB\) (góc nội tiếp) (2)

\(sđ\widehat{CDB}=\dfrac{1}{2}sđcungBC\) (góc nội tiếp) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{ADB}=\widehat{CDB}\) => DB là phân giác của \(\widehat{ADC}\)

30 tháng 5 2020

Giả thiết ko đủ.