K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2021

\(\frac{a}{b}-\frac{a+2001}{b+2001}=\frac{a\left(b+2001\right)-b\left(a+2001\right)}{b\left(b+2001\right)}=\frac{2001\left(a-b\right)}{b\left(b+2001\right)}.\)

Ta có \(b>0\Rightarrow b\left(b+2001\right)>0\)

+ Nếu \(a>b\Rightarrow2001\left(a-b\right)>0\Rightarrow\frac{2001\left(a-b\right)}{b\left(b+2001\right)}>0\Rightarrow\frac{a}{b}>\frac{a+2001}{b+2001}\)

+ Nếu \(a< b\Rightarrow2001\left(a-b\right)< 0\Rightarrow\frac{2001\left(a-b\right)}{b\left(b+2001\right)}< 0\Rightarrow\frac{a}{b}< \frac{a+2001}{b+2001}\)

23 tháng 6 2018

Quy đồng mẫu số:

\(\frac{a}{b}\)\(\frac{a\left(b+2001\right)}{b\left(b+2001\right)}\)=\(\frac{ab+2001a}{b\left(b+2001\right)}\)

\(\frac{a+2001}{b+2001}\)=\(\frac{\left(a+2001\right)b}{\left(b+2001\right)b}\)=\(\frac{ab+2001b}{b\left(b+2001\right)}\)

Vì b>0 nên mẫu số của 2 phân số trên dương.Chỉ cần so sánh tử số

so sánh ab+2001a vớiab+2001b

-Nếu a<b =>Tử số phân số thứ nhất < tử số phân số thứ 2

=> \(\frac{a}{b}\)\(\frac{a+2001}{b+2001}\)

-Nếu a=b => 2 phân số bằng 1

-Nếu a>b => tử số phân số thứ nhất lớn hơn tử số phân số thứ 2

=> \(\frac{a}{b}\)\(\frac{a+2001}{b+2001}\)

23 tháng 6 2018

Ta có: 

 ( a + 2001 ) .b = a.b + b.2001         ( 1 )

 ( b . 2001 ) . a = a.b + a.2001         ( 2 )

Xét 3 trường hợp : 

TH1:         a=b

Từ ( 1 ) và ( 2 ) => b.2001 = a.2001 => a.b + b.2001 = a.b + a.2001 => ( a + 2001 ) .b = ( b + 2001 ) .a => \(\frac{a}{b}\)\(\frac{a+2001}{b+2001}\)

TH2:         a<b

Từ ( 1 ) và ( 2 ) => b.2001 > a.2001 => a.b + b.2001 > a.b + a.2001 => ( a + 2001 ) .b > ( b + 2001 ) .a => \(\frac{a}{b}\)\(\frac{a+2001}{b+2001}\)

TH3:       a>b

Từ ( 1 ) và ( 2 ) => b.2001 < a.2001 => a.b + b.2001 < a.b + a.2001 => ( a + 2001 ) .b < ( b + 2001 ) .a => \(\frac{a}{b}\)\(\frac{a+2001}{b+2001}\)

ủng hộ nhé

13 tháng 9 2020

Xét:   a(b+2001)= b(a+2001)

            ab+2001a=ab+2001b

Xảy ra các trường hợp:

+) Nếu a>b    =>    ab+2001a > ab+2001b

                      =>     a/b > a+2001/b+2001

+) Nếu a<b    =>    ab+2001a < ab+2001b

                       =>    a/b  >  a+2001/b+2001

+) Nếu a=b     =>   ab+ 2001a = ab + 2001b

                       => a/b = a+2001/b+2001

10 tháng 6 2015

Ta có:

\(\frac{a}{b}=\frac{a\left(b+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b^2+2001b}\)

\(\frac{a+2001}{b+2001}=\frac{b\left(a+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001b}{b^2+2001b}\)

TH1: A>B THÌ A/B>A+2001/B+2001

TH2 : A<B THÌ A/B<A+2001/B+2001

TH3: A=B THÌ A/B=A+2001/B+2001

**** bạn

10 tháng 6 2015

Để so sánh hai số hữu tỉ a/b và a+2001/ b+ 2001, ta so sánh hai vế a(b+2001) và b(a+2001)
Xét hiệu: a(b+2001) -  b(a+2001) = ab + a2001 - (ab+ b2001) = 2001(a-b)
Ta có 3 trường hợp với b>0:
Trường hợp 1: a-b=0 =>a=b hay ta có a(b+2001)/ b(b+ 2001) = b(a+2001)/ b(b+ 2001) => a/b = a+2001/ b+ 2001
Trường hợp 2: a-b>0 =>a>b hay ta có a(b+2001)/ b(b+ 2001) > b(a+2001)/ b(b+ 2001) => a/b > a+2001/ b+ 2001
Trường hợp 3: a-b<0 =>a<b hay ta có a(b+2001)/ b(b+ 2001) < b(a+2001)/ b(b+ 2001) => a/b < a+2001/ b+ 2001

7 tháng 9 2016

Nếu 

a < b 

=) \(\frac{a}{b}< \frac{a+2001}{b+2001}\)

Nếu a > b 

=) \(\frac{a}{b}>\frac{a+2001}{b+2001}\)

Nếu a = b 

=) \(\frac{a}{b}=\frac{a+2001}{b+2001}\)

7 tháng 9 2016

Xét tích            \(a\left(b+2001\right)=ab+2001a\\ b\left(a+2001\right)=ab+2001b.\)Vì \(b>0\)nên \(b+2001>0\).

Nếu \(a>b\) thì \(ab+2001a>ab+2001b\\ a\left(b+2001\right)>b\left(a+2001\right)\)

\(\frac{\Rightarrow a}{b}>\frac{a+2001}{b+2001}\) 

Nếu \(a< b\) thì \(\frac{\Rightarrow a}{b}< \frac{a+2001}{b+2001}\)

Nếu \(a=b\) thì rõ ràng \(\frac{a}{b}=\frac{a+2001}{b+2001}\)

2 tháng 9 2016

a/b < a+2001/b+2001

2 tháng 9 2016

Ta có: \(\frac{a}{b}=\frac{a.\left(b+2001\right)}{b.\left(b+2001\right)}=\frac{ab+2001a}{b^2+2001b}\) 

         \(\frac{a+2001}{b+2001}=\frac{b.\left(a+2001\right)}{b.\left(b+2001\right)}=\frac{ab+2001b}{b^2+2001b}\)

*TH1: a=b

=>\(\frac{a}{b}=\frac{a+2001}{b+2001}=1\)

*TH2: a<b

=>ab+2001a<ab+2001b

=>\(\frac{ab+2001a}{b^2+2001b}< \frac{ab+2001b}{b^2+2001b}\)

=>\(\frac{a}{b}< \frac{a+2001}{b+2001}\)

TH3:a>b

=>ab+2001a>ab+2001b

=>\(\frac{ab+2001a}{b^2+2001b}>\frac{ab+2001b}{b^2+2001b}\)

=>\(\frac{a}{b}>\frac{a+2001}{b+2001}\)

23 tháng 8 2014

Qui đồng mẫu số:

\(\frac{a}{b}=\frac{a\left(b+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)

\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)

Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.

So sánh ab + 2001a với ab + 2001b

- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai

  => \(\frac{a}{b}\frac{a+2001}{b+2001}\)

 

26 tháng 10 2014

gv là cô giáo đấy. Trang cá nhân của gv đề là học tại đại học sư phạm mà k thấy seo

25 tháng 5 2016

Qui đồng mẫu số:

a/b = a(b+2001) / b(b+2001) = ab + 2001a /  b(b+2001)

a+2001 / b + 2001  =  (a+2001)b / (b + 2001)b  = ab + 2001b / b(b+2001) 

Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.

So sánh ab + 2001a với ab + 2001b

- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai

  =>a/b < a+2001/b+2001

- Nếu a = b => hai phân số bằng nhau = 1

- Nếu a > b => Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai

 

=> a/b > a+2001/ b +2001

29 tháng 8 2017

hay lắm bạn banhqua

23 tháng 8 2016

 Xét 3 TH : 
1) a < b 
Khi đó ta có ab + 2001a < ab + 2001b hay a(b+2001) < b(a+2001) 
Chia 2 vế cho b(b+2001) ta được a/b < (a+2001)/(b+2001) 

2) a = b ---> a/b = (a+2001)/(b+2001) = 1 

3) a > b 
Khi đó ta có ab + 2001a > ab + 2001b hay a(b+2001) > b(a+2001) 
Chia 2 vế cho b(b+2001) ta được a/b > (a+2001)/(b+2001) 

Tóm lại 
a/b < (a+2001)/(b+2001) nếu a < b 
a/b = (a+2001)/(b+2001) nếu a = b 
a/b > (a+2001)/(b+2001) nếu a > b

13 tháng 6 2019

E tham khảo ở câu hỏi tương tự nhé

13 tháng 6 2019

#)Giải :

Quy đồng mẫu số : 

\(\frac{a}{b}=\frac{a\left(b+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)

\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)

Vì b > 0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số 

So sánh ab + 2001a và ab + 2001b

- Nếu a < b => tử số của phân số thứ nhất < tử số của phân số thứ hai

=> \(\frac{a}{b}< \frac{a+2001}{b+2001}\)

- Nếu a = b => hai phân số bằng nhau và bằng 1

- Nếu a > b => tử số của phân số thứ nhất > tử số của phân số thứ hai

=> \(\frac{a}{b}>\frac{a+2001}{b+2001}\)