Chứng minh (6^2n+10.3^n) chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
Ta có:3n+1 chia hết cho 11-2n
=>3n+1chia hết cho -(2n-11)
=>3n+1 chia hết cho 2n-11
=>2.(3n+1) chia hết cho 2n-11
=>6n+22 chia hết cho 2n-11
=>6n-33+33+22 chia hết cho 2n-11
=>3.(2n-11)+55 chia hết cho 2n-11
=>55 chia hết cho 2n-11
=>2n-11=Ư(55)=(1,5,11,55)
=>2n=(12,16,22,66)
=>n=(6,8,11,33)
Vậy n=6,8,11,33
a)8^7 - 2^18 = 8.(2^18) - 2^18 = 7 . 2^18 = 14 . 2 ^17
Vì 14 luôn chia hết cho chính nó suy ra 14 . 2 ^17 cũng chia hết cho 14.
Vậy biểu thức ban đầu luôn chia hết cho 14
b)79^2+79.11=79(79+11)=79.90=79.30.3 chia hết cho 30
c)số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
Tick nha
a, 4n+2 chc 2n+6
=>4n+12-10 chc 2n+6
=>2(2n+6)-10 chc 2n+6
=>10 chc 2n+6
2n+6 thuộc ước của 10
Xét 2n chẵn, 6 chẵn =>chọn đc n=-2; -4; 5; -16
215+165=215+220=215(1+25)=215*33
Vì 33 chc 11 và chc 3
Nên 215+165 chc 3 và 11
như thế này hả
2.11+11:3 chứng minh
22+11=33 nếu xét về dấu hiêu chia hết thì:3+3=6;6:3 nên 33:3
đề thiếu nha bn ; đề đủ là : chứng minh \(6^{2n}+10.3^n\) chia hết cho \(11\) với mọi \(n\) thuộc N* .
+ với \(n=1\) ta có : \(6^{2n}+10.3^n=6^2+10.3^1=66\) chia hết cho \(11\)
+ giả sử : khi \(n=k\) thì \(6^{2n}+10.3^n=6^{2k}+10.3^k\) chia hết cho \(11\)
ta có khi \(n=k+1\) \(\Rightarrow6^{2n}+10.3^n=6^{2\left(k+1\right)}+10.3^{k+1}\)
\(=6^2.6^{2k}+10.3^k.3=36.6^{2k}+10.3^k.36-33.10.3^k\)
\(=\left(36.\left(6^{2k}+10.3^k\right)-33.10.3^k\right)⋮11\)
\(\Rightarrow6^{2n}+10.3^n=\left(36.\left(6^{2k}+10.3^k\right)-33.10.3^k\right)⋮11\)
vậy \(6^{2n}+10.3^n\) chia hết cho \(11\) với mọi \(n\) thuộc N*