K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=[\left(a+b\right)^3+c^3]-[3ab\left(a+b\right)+3abc]=\left(a+b+c\right)[\left(a+b\right)^2-\left(a+b\right)c+c^3]-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-3ab-ab-bc-ca\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

29 tháng 10 2017

Ta có : (a+b+c)(a2+b2+c2-ab-bc-ca)

=a3+ab2+ac2-a2b-abc-ca2+a2b+b3+bc2-ab2-b2c-abc+a2c+cb2+c3-abc-bc2-c2a

Trừ đi các hạng tử đồng dạng ta có kết quả :

=a3+b3+c3-3abc

Vậy : a3+b3+c3-3abc = (a+b+c)(a2+b2+c2-ab-bc-ca)

23 tháng 6 2019

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

23 tháng 6 2019

#)Giải :

Ta có : (a + b + c)(a+ b+ c- ab - bc - ca) 

= a3 + ab+ ac2 - a2b - abc - ca2 + a2b + b3 + bc2 - ab2 - b2c - abc + a2c + cb2 + c3 - abc - bc2 - c2a

Loại bỏ các hạng tử đồng dạng, ta được : 

= a3 + b3 + c3 - 3abc

=> a3 + b3 + c3 - 3abc = (a + b + c)(a+ b+ c- ab - bc - ca)  => đpcm

21 tháng 10 2016

a) Biến đổi vế phải ta có:

\(\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)=a^3+b^3=VT\)

Vậy đẳng thức trên đc chứng minh

b) Sai đề sửa lại

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Biến đổi vế trái ta có:

\(a^3+b^3+c^3-3abc\)

\(=\left(a^3+b^3\right)+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)-3abc+c^3\)

\(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=VP\)

Vậy đẳng thức trên đc chứng minh

30 tháng 1 2017

a) Biến đổi vế phải ta được :

(a + b)3 - 3ab(a + b)

= a3 + 3a2b + 3ab2 + b3 - 3ab(a + b)

= a3 + b3 + ( 3a2b + 3ab2 ) - 3ab( a + b)

= a3 + b3 + 3ab( a+ b) - 3ab( a + b)

= a3+ b3 = VT

=> a3 + b3 = ( a+b)3 - 3ab( a + b)

cố quá = quá cố

9 tháng 2 2020

Đặt \(a+b+c=3u;ab+bc+ca=3v^2;abc=w^3\)

BĐT \(\Leftrightarrow\) \(54u^3-54uv^2+9w^3\ge3v^2\)  

\(\Leftrightarrow54u^3-63uv^2+9w^3\ge0\)

\(\Leftrightarrow9\left(w^3+3u^3-4uv^2\right)+27u\left(u^2-v^2\right)\ge0\)

Đúng theo BĐT Schur bậc 3: \(w^3+3u^3\ge4uv^2\) và BĐT quen thuộc: \(u^2\ge v^2\)

P/s: Ko chắc ạ..

24 tháng 7 2018

a)  \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3ab\left(a+b\right)+3\left(a+b\right)\left(ac+bc+c^2\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

b)  \(VT=a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)

6 tháng 2 2017

Biến đổi vế trài ta có

a3+b3+c3-3abc+3ab(a+b)-3ab(a+b)

=(a+b)(a2-ab+b2)-3ab(a+b+c)+3ab(a+b)+c3

=(a+b)(a+b)2+c3-3ab(a+B+c)

=......................

Bn cứ nhóm lại là = vế phải.

10 tháng 3 2017

bạn thiếu dấu cộng giữa b2 và cvì vậy vế phải là (a+b+c)(a2+b2+c2 -ab-bc-ac)

Ta có : a3+b3+c3 -3abc = (a+b)3 -3ab(a+b)+c3 -3abc = (a+b)3 +c3  -3ab(a+b+c)

                                   =(a+b+c)3 -3(a+b)c(a+b+c)-3ab(a+b+c)

                                   =(a+b+c)((a+b+c)2-3(ac+bc)-3ab)

                                   =(a+b+c)(a2+b2+c2 +2ab +2ac +2bc -3ab -3bc -3ac )

                                   =(a+b+c)(a2+b+c2-ab-bc-ac)=vp (đpcm)