K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: 5^2n-25=25^n-25

=(...25)-25=(...00) chia hết cho 100 nha

5^2n - 25 : 100

= 25^n - 25 

= (.....25)-25 =(.....00) chia hết cho 100 nha bạn 

chúc bạn học tốt ạ 

21 tháng 7 2016

\(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{2.n^2+2n+1}< \frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{2.n^2+2n}\)

\(A< \frac{1}{2}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n.\left(n+1\right)}\right)\)

\(A< \frac{1}{2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n.\left(n+1\right)}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{n+1}\right)< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

12 tháng 6 2017

câu 1 thiếu đề

câu 2: \(\left(\frac{1}{3}\right)^{2n-1}=3^5\Leftrightarrow\frac{1}{3^{2n-1}}=3^5\Leftrightarrow1=3^5.3^{2n-1}\Leftrightarrow3^{2n+4}=1\)<=>2n+4=0

<=>2n=-4<=>n=-2

19 tháng 2 2017

1, Ta có:\(\left(2n+7\right)⋮31\Rightarrow\left(2n+7\right)\inƯ\left(31\right)\)

\(\Leftrightarrow2n+7\in1;31\)

\(\Rightarrow n\in-3;12\)

Mà n là số tự nhiên nên n=12

Vậy n=12.

2,Ta có:n2+5n+5=n(n+5)+5

n(n+5) là tích của 2 số tự nhiên cách nhau 5 đơn vị nên tận cùng là 0,4,6.

Suy ra n(n+5)+5 tận cùng là 1;5;9.

Mà số chia hết cho 25 tận cùng là 25,50,75,00.

Nhưng trong các trường hợp trên thì trường hợp tận cùng là 5 cũng rất ít và nó càng không thể chia hết cho 25.

Vậy n2+5n+5 không chia hết cho 25.

2 tháng 11 2016

52n+2 + 52n = 52n (25+1) = 52n . 26 chia hết 26

2 tháng 11 2016

\(5^2.5^{2n}+5^{2n}=5^{2n}.\left(5^2+1\right)=26.5^{2n}\)

chia het cho 26

18 tháng 7 2016

\(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{2.n^2+2n+1}< \frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{2.n^2+2n}\)

\(A< \frac{1}{2}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n.\left(n+1\right)}\right)\)

\(A< \frac{1}{2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{n+1}\right)< \frac{1}{2}\)

=> \(A< \frac{1}{2}\)

28 tháng 4 2022

\(M=75.4\left(4^{2020}+4^{2019}+...+4+1\right)+75+25=\)

\(=300.\left(4^{2020}+4^{2019}+...+4+1\right)+100=\)

\(=100\left[3.\left(4^{2020}+4^{2019}+...+4+1\right)+1\right]⋮100\)

 

19 tháng 3 2020

Ta có: 

\(A=\frac{1}{6.25}+\frac{1}{7.30}+...+\frac{1}{8.35}+\frac{1}{100.495}\)

\(=\frac{1}{6.\left(5.5\right)}+\frac{1}{7.\left(5.6\right)}+...+\frac{1}{8.\left(5.7\right)}+\frac{1}{100.\left(5.99\right)}\)

\(=\frac{1}{5}\left(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{99.100}\right)\)

\(=\frac{1}{5}\left[\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{8}\right)+...+\left(\frac{1}{99}-\frac{1}{100}\right)\right]\)

\(=\frac{1}{5}\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=\frac{1}{5}\left(\frac{1}{5}-\frac{1}{100}\right)\)

Mà \(\frac{1}{5}-\frac{1}{100}< \frac{1}{5}\)nên \(A=\frac{1}{5}\left(\frac{1}{5}-\frac{1}{100}\right)< \frac{1}{5}.\frac{1}{5}=\frac{1}{25}.\)

Vậy \(A< \frac{1}{25}.\)

19 tháng 3 2020

100-5=95   phân số

(1/100+1/6):2=53/600

(495-25):5+1=95   số

(495+5)x95:2=23750

53/600x23750=25175/12

12 tháng 7 2015

Có cần mik chứng mik \(\frac{2n+1}{n-5}\)không là phân số tối giản không?