K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 9 2019

ĐKXĐ: \(\left[{}\begin{matrix}x< -2\\x\ge-\frac{2}{5}\end{matrix}\right.\)

\(\Leftrightarrow\frac{8}{5\left(x+2\right)}-1+\sqrt{\frac{5x+2}{x+2}}-\frac{6}{5}=0\)

\(\Leftrightarrow\frac{-\left(5x+2\right)}{5\left(x+2\right)}+\sqrt{\frac{5x+2}{x+2}}-\frac{6}{5}=0\)

Đặt \(\sqrt{\frac{5x+2}{x+2}}=a\ge0\)

\(-\frac{1}{5}a^2+a-\frac{6}{5}=0\Leftrightarrow a^2-5a+6=0\)

\(\Rightarrow\left[{}\begin{matrix}a=2\\a=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{5x+2}{x+2}=4\\\frac{5x+2}{x+2}=9\end{matrix}\right.\) \(\Rightarrow...\)

NV
26 tháng 12 2020

ĐKXĐ: \(x\ge-2\)

\(\sqrt{2}\left(x^2+8\right)=5\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{x^2-2x+4}=b>0\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}\left(2a^2+b^2\right)=5ab\)

\(\Leftrightarrow4a^2-5\sqrt{2}ab+2b^2=0\)

\(\Leftrightarrow\left(a-\sqrt{2}b\right)\left(4a-\sqrt{2}b\right)=0\)

Đến đây chắc bạn tự giải được

26 tháng 12 2020

ĐKXĐ: x≥−2x≥−2

√2(x2+8)=5√(x+2)(x2−2x+4)2(x2+8)=5(x+2)(x2−2x+4)

Đặt {√x+2=a≥0√x2−2x+4=b>0{x+2=a≥0x2−2x+4=b>0

⇒√2(2a2+b2)=5ab⇒2(2a2+b2)=5ab

⇔4a2−5√2ab+2b2=0⇔4a2−52ab+2b2=0

⇔(a−√2b)(4a−√2b)=0

23 tháng 1 2016

đặt \(\sqrt{x+5}=a\);\(\sqrt{x+2}=b\)  => ab=\(\sqrt{x^2+7x+10}\) và \(a^2-b^2=3\)

 do đó pt trở thành \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

                         \(\left(a-b\right)\left(1+ab\right)-\left(a-b\right)\left(a+b\right)=0\)

                         \(\left(a-b\right)\left(1+ab-a-b\right)=0\) 

đến đây tự giải tiếp nhé

23 tháng 1 2016

em chưa học , em mới lớp 5 thui

Giải phương trình : $\sqrt{x^{2}+5}+3x =\sqrt{x^{2}+12}+5$ - posted in Đại ... Giải. Dễ thấy, nếu x < 0: VT=√x2+5+3x<√x2+12<√x2+12+5 V T = x 2 + .... phương trình đã cho tương đương √x2+5+√x2+12=73x−5 x 2 + 5 + x 2 ...

15 tháng 9 2018

\(\sqrt{x+3}+\sqrt{1-x}=2-8\sqrt{\left(x+3\right)\left(x+1\right)}\)

\(\Leftrightarrow\sqrt{x+3}+\sqrt{1-x}-2+8\sqrt{\left(x+3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\sqrt{x+3}-\frac{x+3}{\sqrt{1-x}+2}+8\sqrt{\left(x+3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(1-\frac{\sqrt{x+3}}{\sqrt{1-x}+2}+8\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\sqrt{x+3}=0\)

\(\Leftrightarrow x=-3\)