Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
ĐKXĐ: \(x\ge-2\)
\(\sqrt{2}\left(x^2+8\right)=5\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{x^2-2x+4}=b>0\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}\left(2a^2+b^2\right)=5ab\)
\(\Leftrightarrow4a^2-5\sqrt{2}ab+2b^2=0\)
\(\Leftrightarrow\left(a-\sqrt{2}b\right)\left(4a-\sqrt{2}b\right)=0\)
Đến đây chắc bạn tự giải được
ĐKXĐ: x≥−2x≥−2
√2(x2+8)=5√(x+2)(x2−2x+4)2(x2+8)=5(x+2)(x2−2x+4)
Đặt {√x+2=a≥0√x2−2x+4=b>0{x+2=a≥0x2−2x+4=b>0
⇒√2(2a2+b2)=5ab⇒2(2a2+b2)=5ab
⇔4a2−5√2ab+2b2=0⇔4a2−52ab+2b2=0
⇔(a−√2b)(4a−√2b)=0
\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\left(đk:x\ge-2\right)\)
Đặt \(a=\sqrt{x+5},b=\sqrt{x+2}\left(đk:a,b\ge0,a\ne b\right)\)
\(\Rightarrow\left\{{}\begin{matrix}ab=\sqrt{\left(x+5\right)\left(x+2\right)}=\sqrt{x^2+7x+10}\\a^2-b^2=x+5-x-2=3\end{matrix}\right.\)
PT trở thành: \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(ab+1\right)=\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)\left(ab+1-a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(b-1\right)\left(a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=1\\b=1\end{matrix}\right.\)
+ Với a=1
\(\Rightarrow\sqrt{x+5}=1\Leftrightarrow x+5=1\Leftrightarrow x=-4\left(ktm\right)\)
+ Với b=1
\(\Rightarrow\sqrt{x+2}=1\Leftrightarrow x+2=1\Leftrightarrow x=-1\left(tm\right)\)
Vậy \(S=\left\{-1\right\}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+5}=a\\\sqrt{x+2=b}\end{matrix}\right.\)
Thì được:
\(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(a-b\right)=0\)
Làm tiếp
Giải phương trình : $\sqrt{x^{2}+5}+3x =\sqrt{x^{2}+12}+5$ - posted in Đại ... Giải. Dễ thấy, nếu x < 0: VT=√x2+5+3x<√x2+12<√x2+12+5 V T = x 2 + .... phương trình đã cho tương đương √x2+5+√x2+12=73x−5 x 2 + 5 + x 2 ...