K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) PT \(\Leftrightarrow x^2-x-x^2+2x=5\) \(\Rightarrow x=5\)

  Vậy ...

b) PT \(\Leftrightarrow8x=16\) \(\Rightarrow x=2\)

  Vậy ...

a: Ta có: \(x\left(x-1\right)-x^2+2x=5\)

\(\Leftrightarrow x^2-x-x^2+2x=5\)

hay x=5

b: Ta có: \(2x\left(3x+4\right)-6x^2=16\)

\(\Leftrightarrow6x^2+8x-6x^2=16\)

\(\Leftrightarrow8x=16\)

hay x=2

a) Ta có: \(6x\left(x-5\right)+3x\left(7-2x\right)=18\)

\(\Leftrightarrow6x^2-30x+21x-6x^2=18\)

\(\Leftrightarrow-9x=18\)

hay x=-2

Vậy: S={-2}

b) Ta có: \(2x\left(3x+1\right)+\left(4-2x\right)\cdot3x=7\)

\(\Leftrightarrow6x^2+2x+12x-6x^2=7\)

\(\Leftrightarrow14x=7\)

hay \(x=\dfrac{1}{2}\)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)

c) Ta có: \(0.5x\left(0.4-4x\right)+\left(2x+5\right)\cdot x=-6.5\)

\(\Leftrightarrow0.2x-2x^2+2x^2+5x=-6.5\)

\(\Leftrightarrow5.2x=-6.5\)

hay \(x=-\dfrac{5}{4}\)

Vậy: \(S=\left\{-\dfrac{5}{4}\right\}\)

d) Ta có: \(\left(x+3\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)=6\)

\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=6\)

\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)

\(\Leftrightarrow2x+16=6\)

\(\Leftrightarrow2x=-10\)

hay x=-5

Vậy: S={-5}

e) Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)

\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)

\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)

\(\Leftrightarrow14x=0\)

hay x=0

Vậy: S={0}

8 tháng 9 2021

\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)

\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)

Bài 4:

a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)

\(\Leftrightarrow6x-9-2x+4=-3\)

\(\Leftrightarrow4x=2\)

hay \(x=\dfrac{1}{2}\)

b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)

\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)

\(\Leftrightarrow3x=13\)

hay \(x=\dfrac{13}{3}\)

c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)

\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)

\(\Leftrightarrow-8x=-8\)

hay x=1

2 tháng 9 2021

a) \(3\left(x-2\right)+2\left(x-3\right)=5\)

\(\Rightarrow3x-6+2x-6=5\)

\(\Rightarrow5x=17\Rightarrow x=\dfrac{17}{5}\)

b) \(\left(2x-8\right)^2-16=0\)

\(\Rightarrow\left(2x-8-4\right)\left(2x-8+4\right)=0\)

\(\Rightarrow\left(2x-12\right)\left(2x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x=12\\2x=4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)

c) \(\left(2x-1\right)^2-\left(4x+1\right)\left(x-3\right)=3\)

\(\Rightarrow4x^2-4x+1-4x^2+12x-x+3=3\)

\(\Rightarrow7x=-1\Rightarrow x=-\dfrac{1}{7}\)

a: Ta có: \(3\left(x-2\right)+2\left(x-3\right)=5\)

\(\Leftrightarrow3x-6+2x-6=5\)

\(\Leftrightarrow5x=17\)

hay \(x=\dfrac{17}{5}\)

b: Ta có: \(\left(2x-8\right)^2-16=0\)

\(\Leftrightarrow\left(2x-4\right)\left(2x-12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

a) Ta có: \(x\left(x-1\right)-x^2+2x=5\)

\(\Leftrightarrow x^2-x-x^2+2x=5\)

hay x=5

b) Ta có: \(2x^2-2x=\left(x-1\right)^2\)

\(\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

c) Ta có: \(\left(x+3\right)\cdot\left(x^2-3x+9\right)-x\left(x-2\right)^2=19\)

\(\Leftrightarrow x^3+27-x\left(x^2-4x+4\right)-19=0\)

\(\Leftrightarrow x^3+8-x^3+4x^2-4x=0\)

\(\Leftrightarrow4x^2-4x+8=0\)(Vô lý)

21 tháng 9 2021

a. 9x2 - 6x - 3 = 0

<=> 3(3x2 - 2x - 1) = 0

<=> 3(3x2 - 3x + x - 1) = 0

<=> \(3\left[3x\left(x-1\right)+\left(x-1\right)\right]=0\)

<=> 3(3x + 1)(x - 1) = 0

<=> \(\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)

b. (2x + 1)2 - 4(x + 2)2 = 9

<=> (2x + 1)2 - \(\left[2\left(x+2\right)\right]^2=9\)

<=> (2x + 1 - 2x - 4)(2x + 1 + 2x + 4) = 9

<=> -3(4x + 5) = 9

<=> 4x + 5 = -3

<=> 5 + 3 = -4x

<=> -4x = 8

<=> -x = 2

<=> x = -2

21 tháng 9 2021

a) \(\Leftrightarrow\left(9x^2-6x+1\right)-4=0\)

\(\Leftrightarrow\left(3x-1\right)^2-4=0\)

\(\Leftrightarrow3\left(x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

b) \(\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\)

\(\Leftrightarrow12x=-24\Leftrightarrow x=-2\)

c) \(\Leftrightarrow3x^2-6x+3-3x^2+15x=21\)

\(\Leftrightarrow9x=18\Leftrightarrow x=2\)

d) \(\Leftrightarrow x^2+6x+9-x^2-4x+32=1\)

\(\Leftrightarrow2x=-40\Leftrightarrow x=-20\)

11 tháng 1 2022

a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)

Ta có bảng:

x-3-1-515
2y-6-5-151
x2-248
y\(\dfrac{1}{2}\left(loại\right)\)\(\dfrac{5}{2}\left(loại\right)\)\(\dfrac{11}{2}\left(loại\right)\)\(\dfrac{7}{2}\left(loại\right)\)

Vậy không có x,y thỏa mãn đề bài 

b, tương tự câu a

 \(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)

Rồi làm tương tự câu a

\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)

Rồi làm tương tự câu a

 

15 tháng 10 2023

2:

a: \(9x^2-1=\left(3x\right)^2-1=\left(3x-1\right)\left(3x+1\right)\)

b: \(2\left(x-1\right)+x^2-x\)

\(=2\left(x-1\right)+x\left(x-1\right)\)

\(=\left(x-1\right)\left(x+2\right)\)

c: \(3x^2+14x-5\)

\(=3x^2+15x-x-5\)

\(=3x\left(x+5\right)-\left(x+5\right)=\left(x+5\right)\left(3x-1\right)\)

3: 

a: \(2x\left(x-1\right)-2x^2=4\)

=>\(2x^2-2x-2x^2=4\)

=>-2x=4

=>x=-2

b: \(x\left(x-3\right)-\left(x+2\right)\left(x-1\right)=5\)

=>\(x^2-3x-\left(x^2+x-2\right)=5\)

=>\(x^2-3x-x^2-x+2=5\)

=>-4x=3

=>x=-3/4

c: \(4x^2-25+\left(2x+5\right)^2=0\)

=>\(\left(2x-5\right)\left(2x+5\right)+\left(2x+5\right)^2=0\)

=>\(\left(2x+5\right)\left(2x-5+2x+5\right)=0\)

=>4x(2x+5)=0

=>\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)

3 tháng 10 2021

\(a,\Rightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1-3x^2=54\\ \Rightarrow26x=26\Rightarrow x=1\\ b,\Rightarrow x^3-9x^2+27x-27-x^3+27+6x^2+12x+6+3x^2=-33\\ \Rightarrow39x=-39\Rightarrow x=-1\)

15 tháng 9 2021

a)\(3x^2-4x=0<=>x(3x-4)=0\)
TH1: x=0

TH2 3x-4=0 <=>x=4/3

KL:.....

b) (x+3)(x−1)+2x(x+3)=0.

<=> (x+3)(x-1+2x)=0

TH1: x+3=0 <=> x=-3

TH2  x-1=0  <=> x=1

KL:.....

c) \(9x^2+6x+1=0. <=>(3x+1)^2=0<=>3x+1=0<=>x=-1/3 ​\)

KL:......
d) \(x^2−4x=4.<=>(x-2)^2=0<=>x-2=0<=>x=2\)

KL:....

15 tháng 9 2021

a) \(3x^2-4x=0\)

\(\Leftrightarrow x\left(3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)

b) \(\left(x+3\right)\left(x-1\right)+2x\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)

c) \(9x^2+6x+1=0\)

\(\Leftrightarrow\left(3x+1\right)^2=0\)

\(\Leftrightarrow3x+1=0\Leftrightarrow x=-\dfrac{1}{3}\)

d) \(x^2-4x=4\)

\(\Leftrightarrow\left(x-2\right)^2=8\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=2\sqrt{2}\\x-2=-2\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}+2\\x=-2\sqrt{2}+2\end{matrix}\right.\)