K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2017

\(A=7+7^2+7^3+........+7^{2016}\)

\(A=7\left(1+7+7^2+7^3+........+7^{2012}+7^{2013}+7^{2014}+7^{2015}\right)\)

\(A=7\left[\left(1+7+7^2+7^3\right)+........+\left(7^{2012}+7^{2013}+7^{2014}+7^{2015}\right)\right]\)

\(A=7\left[\left(1+7+7^2+7^3\right)+........+7^{2012}\left(1+7+7^2+7^3\right)\right]\)

\(A=7\left[400+........+7^{2012}.400\right]\)

\(A=7.400\left(1+7^4+7^8+7^{12}+......+7^{2012}\right)⋮400\)

\(20^2=400\) nên \(A⋮20^2\left(dpcm\right)\)

25 tháng 1 2017

chị kết bạn với em nha gửi lời kết bn với em nhé

25 tháng 1 2017

j zậy em hả 

4 tháng 10 2016

Bài 1:

a) Đặt A = 1 + 7 + 72 + 73 + ... + 72016

7A = 7 + 72 + 73 + 74 + ... + 72017

7A - A = (7 + 72 + 73 + 74 + ... + 72017) - (1 + 7 + 72 + 73 + ... + 72016)

6A = 72017 - 1

\(A=\frac{7^{2017}-1}{6}\)

b) Đặt B = 1 + 4 + 42 + 43 + ... + 42017

4B = 4 + 42 + 43 + 44 + ... + 42018

4B - B = (4 + 42 + 43 + 44 + ... + 42018) - (1 + 4 + 42 + 43 + ... + 42017)

3B = 42018 - 1

\(B=\frac{4^{2018}-1}{3}\)

Bài 2:

a) Ta có: \(14\equiv1\left(mod13\right)\)

\(\Rightarrow14^{14}\equiv1\left(mod13\right)\)

\(\Rightarrow14^{14}-1⋮13\left(đpcm\right)\)

b) Ta có: \(2015\equiv1\left(mod2014\right)\)

\(\Rightarrow2015^{2015}\equiv1\left(mod2014\right)\)

\(\Rightarrow2015^{2015}-1⋮2014\left(đpcm\right)\)

4 tháng 10 2016

Sorry mình thiếu 1+7+72+73+...+72016 câu dưới cũng thiếu 4 nha

 

7 tháng 12 2015

7S=7+7^2+7^3+7^4+...+7^2016

=>7S-S=(7+7^2+7^3+7^4+...+7^2016)-(1+7+7^2+7^3+...+7^2015)

=>6S=7^2016-1

=>6S+1=7^2016-1+1=7^2016(đpcm)